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Brief intro on port-Hamiltonian systems
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Brief intro on port-Hamiltonian systems

Some comments on modeling

k —= F,
F. M =
M=
=

Ziome)

The different forces acting on the mass are related by Newton's second law
F+Fs+ Fe=Fs.

The constitutive laws of each element allows to write the forces in terms of internal
variables, external inputs and the parameters. For linear relations F = ma, F. = kq and
Fd = dv.

ma+ dv + kg = Fs.
A dynamic model can be formulated defining a set of state variables. For instance the
displacement g, then since v =¢ and a = g,

mg+dg+ kq = F,

which corresponds to a model of one ordinary differential equation, (ODE) of .order_two.
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Brief intro on port-Hamiltonian systems

g — =
M
M-
L~
TR OO

Another alternative is to define as second state variable the velocity leading to a model of
two ODEs of order one

g=v,
mv + dv + kq = Fs,

which is well suited for control purposes. Indeed, define as state vector x = [q, v]T and
as controlled input the external force u = F;, then the MSD system can be written as the

linear control system
. 0 1 0
X=|: K d}x—l—{l]u.
“m T m m

These are different models of the same system and each of them is valid under the
performed assumption. The choice of one particular model will depend on the specific
problem that needs to be studied.
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Brief intro on port-Hamiltonian systems

Consider now the linear momentum p = mv as state variable instead of the velocity then
p=—kq—dP +F
m

Defining as new state vector x = [gq, p]T, the following dynamic model is obtained

J—D % g
. Fe
X —(J*D)|:V:|+g Fs
f —— ey

e

There is a structure appearing related with the interconnection pattern of energy storing
and energy dissipating elements, and that the change of the state variables (flows) in
time is according to the structure and the driving forces (efforts). Furthermore, the
dynamic model is directly related with the stored energy of the system

1 1p°
H(q.p) = 5ka* + 5%
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Brief intro on port-Hamiltonian systems

Kirchhoff's law states sums of electrical currents at nodes are zero, and sums of voltages
in closed loop must be zero.

Vr+VL+VC:Ve, ir:iL:iC:ie (1)
The energy of the system is defined by the electric charge @ and the magnetic flux ¢.
e 0H_%_%_VC
M@ =5ctar o =[] =87 i)

The two energy-storing elements give rise to two linearly independent differential
equations that characterize the dynamics of the energy variables.

iC:Q:iL:ir:ie7

Vi=d=—-Vc—V,+ V..
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Brief intro on port-Hamiltonian systems

Using the constitutive relation of each element, the previous equations become

where V, = ri, with r is the resistance coefficient. Grouping terms with respect to the
gradient of the energy and using the definition of the output of a port-Hamiltonian

system, one has [3]:([_01 oo D1

OH
y=lo 1| =%
9¢

~lenlo
[
+
—
= O
=
=

which is an input-output port-Hamiltonian system with

0 1 0 0
Ji{—l 0}, and Df{o r}'

The matrix J, known as the structure matrix, embodies the energy-conserving interactions
within the system. The matrix D represents the dissipation matrix, highlighting the
presence of resistive elements. The PH framework facilitates the understanding of energy
flow and the impact of different components on the system's behavior.
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Brief intro on port-Hamiltonian systems

Port-Hamiltonian systems

An input-state-output port-Hamiltonian system with n-dimensional state space manifold
X, input and output spaces U =Y = R™ , and Hamiltonian H : X — R, is given as

%= 160 ~ DG ) + 8w
y =8 ()9 (x)

where the n x n matrices J(x), D(x) satisfy J(x) = —J(x) and D(x) = D" (x) > 0.

By the properties of J(x), D(x), it immediately follows that

OHT
H( (f))*a X
OHT _OH  +
“ox Pox tyou
<yTu

implying passivity if H > 0. The Hamiltonian H is is equal to the total stored energy of
the system, while u" y is the externally supplied power.
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Context and motivation

Context and motivation

Motivations for adopting an energy-based perspective in modeling and
control

@ Physical system can be viewed as a set of simpler subsystems that exchange energy
through ports,

@ Energy is a concept common to all physical domains and is not restricted to linear or
non-linear systems: non-linear approach,

o Energy can serve as a lingua franca to facilitate communication among scientists
and engineers from different fields,

@ Role of energy and the interconnections between subsystems provide the basis for
various control techniques: Lyapunov based control.
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Context and motivation

Context and motivation

@ Originating in macroscopic mechanics, port Hamiltonian formulations were proposed
and intensively used for the modular modelling and control of conservative and
dissipative multiphysics systems for which the thermal domain does not need to be
explicitly represented.

o In many cutting-edge engineering applications, for example within the field of soft or
micro-nano robotics, process control, material sciences, energy production etc ...
temperature plays a central role and needs to be explicitly taken into account.

I Load displacement direction

T"‘ | Mobile mechanical load
T

m

Magnetic Magnetic core with coil
feld
direction A
(1 into air-ga
i 1z20 mm

1

wnt ¢ %

@ Several attempts have been made to extend port Hamiltonian and Lagrangian
formulations to Irreversible Thermodynamic systems.

We present some results on finite and infinite dimensional IPHS.
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Context and motivation

Context and motivation

(Dissipative-) Port Hamiltonian systems (PHS)

Class of non linear dynamic systems derived from an extension to open physical systems
(1992) of Hamiltonian and Gradient systems. This class has been generalized (2001) to
distributed parameter systems.

— (J()-D(x)) 242 1 B(x)u X = (709, DGO) 5+ Bous
X(t) { X X X x(t,z); ya = B

AH(x
B(X)T 6( ) ( fa ) _ W(S’f(-st()<)|8
ey X ’

@ In both cases the thermal domain is not accounted for and:

dH dH
u, or — <ylus+f e
dt = <y dt va v+ f3 €
@ We show how this formalism can be generalized to cope with irreversible
thermodynamic systems for which the thermal domain plays a central role : chemical
reactors, reaction-diffusion systems, heat equation, temperature dependent systems
such as smart materials, ...

H(x) and #(x) are the Hamiltonian functions.
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Context and motivation

Representation of irreversible Thermodynamic Systems

Several attempts have been made to extend port Hamiltonian and Lagrangian
formulations to Irreversible Thermodynamic systems. Among others :
@ metriplectic systems (sum of Hamiltonian and gradient systems) with one or two
generating functions [Grmela and Ottinger, 1997, Grmela, 2002]
@ control Hamiltonian systems defined on contact manifolds [Mrugala et al., 1991,
Eberard et al., 2007, Favache et al., 2010, Ramirez et al., 2013] or their
symplectization [van der Schaft and Maschke, 2018].

o pseudo-gradient systems [Favache et al., 2011],

@ Irreversible/ Thermodynamic port-Hamiltonian Systems and their control
[Ramirez, 2012, Ramirez et al., 2016, Ramirez et al., 2022,
Kirchhoff and Maschke, 2023, Maschke and Kirchhoff, 2023],
@ constrained Lagrangian systems
[Gay-Balmaz and Yoshimura, 2020, Gay-Balmaz and Yoshimura, 2023] which stem
from variational principles.

H. Ramirez (UTFSM/AC3E) 28 March, 2025 13/47



Context and motivation

Port-Hamiltonian systems (without dissipation)

[Maschke and van der Schaft, 1992, van der Schaft, 2000]

%= h(:) T () + gult),
v =807 )

with Hp the mechanical energy and Jo(x) = —Jo(x)" the interconnection matrix

Balance equations expressed by PHS: Conservation of the Hamiltonian

dHo _ OHy" T
dt  ox vy

and of Casimir’s of the Poisson bracket: {Z, G}, = aZT(x)J 96 (x)

dc  ac’ T
dr  ox 1T u e
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Context and motivation

Thermodynamic systems

First and second laws of thermodynamics

Consider a closed system (v = 0),

dHo ds
— —_— >
it 0 and at c>0
—_—
First law Second law
ds 9s' oty OHo
- = - gy - — >
for PHS = ox Jo (x, 51) o >0, for any Ho(x)

ox -

This is the reason to consider quasi Hamiltonian system: retain much of the PHS
structure, but their structure matrices depend explicitly on the gradient of the
Hamiltonian (GENERIC, quasi Hamiltonian systems, Brayton-Mooser formulation,..)

[Grmela and Ottinger, 1997, Hangos et al., 2001, Otero-Muras et al., 2008, Eberard et al., 2007,
Hoang et al., 2011, Favache and Dochain, 2010]

H. Ramirez (UTFSM/AC3E) 28 March, 2025 15/47



Context and motivation

Thermodynamic system (dissipative PHS system)

. OH
X = (Jo*Do) 70

The energy balance is

If Do # 0 energy is being transformed into heat and the total energy is
H(x,s) = Ho(x) + U(s).
From the firs law if u = 0 the total energy has to be conserved
OHT 5 OH  0U,

H=—-"" Dy— 4 —5=0
ox Pox T os
From Gibbs' fundamental relation T = 5= = %—’;’, so the internal entropy creation is
10HT _ OH
=—— Dy— =0 >
T Ox Ox 20

in accordance with the second law of Thermodynamics.
H. Ramirez (UTFSM/AC3E)
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Context and motivation

The resulting system is then

' X —Do 2817 raH
I e
T ax 0
AH
— Ox
-te 3]
which corresponds to a quasi-Hamiltonian system [Ramirez et al., 2013]. In this sense

the symplectic structure of the PHS, given by the Poisson tensor associated with the
structure matrix is destroyed. The structure matrix is co-state dependent!

. oH
,Cj N £

-
1 oH 1
737H DJ Dy —=
T ox xT
T $ }

Figure: Quasi-Hamiltonian system
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Context and motivation

Implications

o Linearity between flows and efforts is lost. For a PHS the flows x and the efforts %

are related by a structure matrix (and eventually a dissipation matrix) which is
constant or modulated by the state x.

@ In control design the matching equations become in general harder to solve.
Moreover in the case of control by interconnection, and in particular when making
control design by energy shaping, the Casimir method needs to be rethought since
the structure matrix depends on the energy.

@ Structure preserving space discretization schemes for the case of infinite dimensional
quasi-Hamiltonian systems need to be rethought [Cardoso-Ribeiro et al., 2024].
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Context and motivation

Entropy production of the MSD

with energy function
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Context and motivation

Entropy production of the MSD

Recall the dissipative PHS formulation of the MSD

gl _[0 1][kq] [0 _1, 5, 1p
o= L] PR
N e N’
J—R % g

If we would like to explicitly express the entropy balance due to the friction we can write
the quasi-PHS

q 0 1 0 kq 0
pl=1-1 0o —dzi||2|+|1]|0
E o der o |[T] |o
kq
y=1[g 0] [2], with  H(x,s) = H(x) + U(s)
T

For many systems it is not necessary to take into account thermal domain. If
temperature can be neglected then the PHS formulation is enough.

T = =

28 March, 2025 20 /47
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Context and motivation

Some cases when temperature can not be neglected

o

Gas

F@)

-——————>

q

Figure: Gas piston system: a perfect gas contained in a cylinder enclosed by a moving piston.
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Context and motivation

The continuous stirred tank reactor (CSTR)

The chemical reaction is denoted by

Vi,...,Vm: stoichiometric coefficients

AL+ . o F Unm_1Am1 = VnA . .
meLem mesm Ai,...,An: chemical species

together with the definition of the reaction rate:
r(A, T)=re(Ar, T) — n(Ar, T)
with A the affinity of reaction.

The mathematical model

The balance equations [Aris, 1989],

ni=rV + Fe — Fsi, $= Z(Feisei — Fsisi) + % + o,
mass i=1

entropy

H. Ramirez (UTFSM/AC3E) 28 March, 2025 22/47



Context and motivation

The heat exchanger

The "simplest” thermodynamic system, i.e. the heat exchanger :

— >
s1, Tq 55, T
4_—
St =u S2 =l
_ 9U _ _ 9U, _
1= 5y =T y2 =54 =T

where s; and s, (resp. Ty and T3) are the entropies (resp. the temperatures) and U; and
U the internal energies of system 1 and 2. The inputs u; and u, correspond to the
entropy flow that the systems exchange and y1 and y» are the energy conjugated outputs.
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Irreversible port Hamiltonian systems (IPHS)

Irreversible port-Hamiltonian systems

A non-linear extension of port Hamiltonian systems
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Irreversible port Hamiltonian systems (IPHS)

Irreversible port Hamiltonian system (IPHS)

IPHS are a particular class of quasi-Hamiltonian systems. The state variables of the IPHS
(for a simple thermodynamic system, i.e. uniform temperature) are the n + 1 extensive
variables of Thermodynamics (g; plus s). From Gibb's equation

dH = Tds + Y _ p;da;

i=1

where T is the temperature, conjugated to the entropy, and the variables p; denote the
intensive variables, which are conjugated to the g; extensive variables.

Definition (Poisson bracket)

For any two functions Z and G and for any matrix G we define the Poisson bracket as

2.6y, =zii6y =[] o= 7] [e]
Lo o

Jg
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Irreversible port Hamiltonian systems (IPHS)

Simple IPHS

Definition
An IPHS undergoing j irreversible processes is defined by
@ a pair of functions: the total energy H : R™! — R and the total entropy s € R,

@ a pair of matrices Jy = —Jg € R™" and G € R™ with j < n and the positive
real-valued functions ~; (x,s), i € {1, .../},

and the ODE
X Jo GR] {i”}
| = T AT 85| +au
- 124
- [f
Os
where u,y € R™ are respectively the input and power conjugated output, and
g € RDX™M the input map. The elements of the vector R € R/*! are defined as
Ri = ~i{s|G(:,)|H}

where the notation G(:, i) indicates the i-th column of the matrix G.

H. Ramirez (UTFSM/AC3E) 28 March, 2025
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Irreversible port Hamiltonian systems (IPHS)

First law of Thermodynamics

The total energy balance is H= y " u implying that H=0ifu=0 expressing the first
law of Thermodynamics.

Second law of Thermodynamics

The internal entropy balance is given by the dynamic of the last coordinate with u = 0,
which can be decomposed using the definition of R as

s':—RTGTaH :—Z(RG TaH)

=D i {sIGC, NIHY = Zm =020,

in accordance with the second law of Thermodynamics.

N,
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Irreversible port Hamiltonian systems (IPHS)

The continuous stirred tank reactor (CSTR)

The chemical reaction is denoted by

Vi,...,Vm: stoichiometric coefficients

AL+ . o F Unm_1Am1 = VnA . .
meLem mesm Ai,...,An: chemical species

together with the definition of the reaction rate:
r(A, T)=re(Ar, T) — n(Ar, T)
with A the affinity of reaction.

The mathematical model

The balance equations [Aris, 1989],

ni=rV + Fe — Fsi, $= Z(Feisei — Fsisi) + % + o,
mass i=1

entropy
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Irreversible port Hamiltonian systems (IPHS)

A single chemical reaction

Vi,...,Um: stoichiometric coefficients
AL+ ... F Um—1Am—1 = UnmAm, Ai,...,An: chemical species
A affinity of reaction

together with the definition of the reaction rate:

r(A,T) = (A, T) = (A T)

H = U, the internal energy

1z
rv Ne — N 0 uy F
G, = . ) Jq :0, R:—7 = s = |V
=i ool + -
Um
————
stoichiometric vector
= rv I fm :  chemical potentials
SSUY,,=A==S iy =——>0 Lo fm
(S, Ul = A 21: s v TA = rv : molar flow
=
I = = -
28 March, 2025 29 /47
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General IPHS formulation

Interconnection of simple IPHS

The general IPHS formulation

H. Ramirez (UTFSM/AC3E) 28 March, 2025 30/47



General IPHS formulation

Interconnection of mechanical systems

BHZ TaHZ

(J2=D2)=— + 212 Y2=8 =

N oxy dx;
L« ] L« ]

At = Taﬂ oH,
=& o (]1—D1)£+glul

Figure: Feedback of PHS

Simple output feedback

where k is a constant.
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General IPHS formulation

Interconnection of mechanical systems

Consider the power-preserving interconnection law

HE I

where k is a constant. The closed-loop energy is then the sum of the stored energy in
each system Hy = Ho, + Ho, and the total energy balance is

. OHo, T . OHy, OHy, ' . OHo T T
H — 1 D 1 2 D 2
0 8X1 01 8X1 aX2 02 8X2 + s + V2 12
_ _OHo" [Do; 0] 9Hy _ g
Ox 0 Do,| 0x —

with x = [x1,x]". The closed-loop dynamics is given by

. OHo, T OHy,
X1 _ (Jo — Do) oa | 4 g 0||wn yij _ |8t 0 B
X2 % 0 & |wl|’ Y2 0 g2T a@”ﬂ

X X2

where the closed-loop interconnection and dissipation matrices are

Jo = Jo, kg1g2T Dy = Do, 0
—kg2gt  do, |7 0 Do,
and where vi and v, are a new set of inputs. The resulting system is again a mechanical

system.
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General IPHS formulation

The interconnection of thermodynamic systems

Assume for simplicity that a purely thermodynamic reservoir (si, T1) is being
interconnected with a purely mechanical system (X2, 68—':22) through some dissipative port

and that the only source of entropy is the interconnection itself. Gibb's relation is then
given by

Tis1 + Z pigi
i=1
u 0 1 i
A HENIE
= T1$1+Q X2 2 -1 0] [y
8X2
=yiu+y n
The previous power preserving interconnection assures energy conservation since H = 0.

Assuming uniform temperature, i.e. T = T and s; = s, the second law requires that
$ > 0, or equivalently that

T
Il

. 10H, T, i+
T T T Ty 20

The interconnection law does not guarantee that this inequality holds
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General IPHS formulation

Proposition [Ramirez and Le Gorrec, 2024]

The power preserving interconnection of two thermodynamic systems needs to be
modulated for the interconnected system to be a thermodynamic system. Furthermore,
the modulating function depends on the the interface, input maps, the conjugated
outputs (intensive variables) and the temperature of the systems.

Indeed, consider the modulated power preserving interconnection

HEER

with 8 the modulating function. The entropy production becomes

. 1 .
s = ﬂ?y;yl >0 = ‘/3 = ’yszyh v >0 to satisfy the second law

H. Ramirez (UTFSM/AC3E) 28 March, 2025 34/47



General IPHS formulation

The interconnection of thermodynamic systems

Similarly, if two thermodynamic reservoirs at different temperatures are interconnected,
then the total entropy is
H  Ho  ToHy+ TiH»

52514_52:?1 i Ti T2

which requires that | ToHy + T1H. > 0 ‘ Since H; = y;' u;, and using the modulated

interconnection
uy o ,3 0 1 p41
uz B -1 0 Y2

B(T- Ty n>0 = |6=+T- Ty

this condition becomes

The modulating function 3 is precisely defined by the ports of the systems, the
temperature and the interface through the positive function ~y. J
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General IPHS formulation

The heat exchanger

The "simplest” thermodynamic system, i.e. the heat exchanger :

— >
s1, Tq 55, T
4_—
St =u S2 =l
_ 9U _ _ 9U, _
1= 5y =T y2 =54 =T

where s; and s, (resp. Ty and T3) are the entropies (resp. the temperatures) and U; and
U the internal energies of system 1 and 2. The inputs u; and u, correspond to the
entropy flow that the systems exchange and y1 and y» are the energy conjugated outputs.
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General IPHS formulation

The heat exchanger

According to Fourier's law the entropy flows into each subsystem are driven by the
thermodynamic driving forces, which are the temperature differences between the
compartments

A A
ulfﬁ(Tzf'ﬁ) U27?2(T1*T2)

where A > 0 denotes Fourier’s heat conduction coefficient. According to the previous
Proposition the previous relation can be equivalently written as

uy o 5 0 1 T1
uz - —1 0 T2
where 5 = ﬁ(Tz — T1). The interconnected system is then
St A 0 1| |Ta
= .- T
HE el E

=17

which is the IPHS model of the heat exchanger.
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General IPHS formulation

The heat exchanger

Consider in a second instance that the inputs are the heat flows rather than the entropy
flows. The dynamical model of the heat exchanger is then

Si = ?fu;, Yi= ?: Bs;
In this case the energy conjugated outputs are physically meaningless. The heat flow
between the compartments are

U1=>\(T2—T1) U2:>\(T1—T2)

=1

which can be equivalently written as
ur| 0 1]]1
o] =15 o]l
with 5 = A(T> — T1) in accordance with the previous Proposition. The interconnected
system is then
S-l A 0 1 T1
| = T, — T
|:52:| nn2 =T {—1 0} {TJ
yi| _ |1
y2 1

which is the IPHS model of the heat exchanger.
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General IPHS formulation

Proposition [Ramirez and Le Gorrec, 2024]

Consider two IPHS, indexed by i = 1,2, defined as

. OH; OH;
Xi| _ | 2x . R s o Joi GiR;
L"] =J [%’Z" + giui, Yi = & [%’;’,"] , where Ji = [—RfT G 0

with x; € R", 5; € R, u; € R, Jo. € R"*" | g; € R Consider the modulated
interconnection

] . 0 1] |w»1 B T
{u | =R, {—l 0} L/J where R, = v.{s|g1g |H}

with s = s1 + s, and H = Hi + H- the total entropy and the total energy.

N

The interconnection defines the IPHS
% OH T OH
1 Ix Ix
. oH oH T
s1 G Vi n T | &g S Rugig>
|l =J %R + , = , J=
x2 % & {VJ [y2] & % —Rug:81" b
52 ﬁ 87/3
s, | 9sp
g O] .
where g = [O o and v1 and v, are a new set of inputs.

™7 i = = e
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General IPHS formulation

Comments

@ The closed-loop system is obtained directly with the state modulated
interconnection.

@ Assume for simplicity vi = v» = 0. The structure matrix of the interconnected
system J is skew-symmetric, hence H = 0 = conservation of the total Hamiltonian.

The internal entropy production of the closed-loop system is 0 = o1 + 02 + g, > 0,
where o1 and o> are respectively the internal entropy production of system 1 and 2, and

Oy = ’Yu{slgngT|H}2 >0

is the entropy produced by the interconnection of the systems.

H. Ramirez (UTFSM/AC3E) 28 March, 2025 40 /47



General IPHS formulation

(Proof sketch) Define z =[x ,s1, %) , ], then s = 51 + 55,

. Os'. 0sT OH 9sT OH
= i Yar T UG
={s,H}y + {s, H},,
where .
h 0 0 Rug18>
J = d J,= .
[O Jj o an LRugzng 0
Developing the first bracket we obtain
257" JoH o257 [eH
{s,H}y = {%X}] h [gﬂ + %2 [%73]
ds1 Osy Osy 9sy
RGP RTG IR a0
8X1 aX2

Developing the second bracket we obtain
{s,H}s, = Ru{slerg |H} = 7u{slgg [H} = 0w >0
where o, is the entropy produced by the interconnection. The entropy balance is
s=o1+02+0,2>0

in accordance with the second law.
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General IPHS formulation

The gas-piston system (mechanical part)

o
v F)
Gas _IW
k
E—
q

Consider an ideal gas contained in a cylinder enclosed by a moving piston which is
attached to a spring. The system is characterized by the mechanical properties of the
piston and the thermodynamic properties of the gas.

The mechanical energy of the piston is Ho(q, p) = ~ p> + %Kq2 and its PHS formulation

2m
gl |0 1] ]|Kq 0 Of |up Y| _ |0 —1| [Kq| |-V
HR S 1 R B v e S L
with u,, = Fr, up, = Fp, q is the relative position of the spring, p is the momentum,
v = £ is the velocity of the piston, F = Kq is the force applied by the spring, F, is the
force applied on the piston by the gas pressure and F, represents the mechanical friction
with m the mass of the piston and K Hooke's constant.
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General IPHS formulation

The gas-piston system (thermodynamic part)

)
Gas Hm
k

The internal energy of the perfect gas, U(s, V), is a function of the entropy and the
volume. The intensive variables of the gas are the temperature T = % and the pressure
—P = %. Furthermore, the temperature, the volume and the pressure of the gas are
related by the law of the ideal gases PV = rTN, where N is the number of moles and r

the ideal gas constant. The IPHS formulation of the gas is

vl 1 0] [u wn] [t o]ou _[-P

s| |10 1| [w]|’ yaf |0 1| x| T
with 1 = qv, u2 = o, where V is the volume and s is the entropy of the gas, g, is the
gas flow due to the displacement of gas by the moving piston and o is the irreversible

creation of entropy due to the non-reversible transformation of mechanical friction into
heat when the piston moves.
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General IPHS formulation

The gas-piston system (interconnection)

The piston and the gas are interconnected through a reversible and an irreversible
relation.

Reversible interconnection

Relates the gas flow and the velocity of the piston and the pressure of the gas with the
force applied on the piston. This interconnection can be formulated as the power

preserving interconnection
nl=al o] )
=A
|:UP2:| L 0 Ypo

where A is the transversal area of the piston.
Irreversible interconnection

Relates the temperature of the gas with the mechanical friction force and the entropy
creation with the velocity of the piston. The mechanical friction can be modeled as
F. = bv, and consequently the entropy creation is ¢ = %bvz, with b > 0 the friction
constant. The interconnection is formulated as

Upy | _ b v 0 1| |ym
7} T |-1 0|y
5
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General IPHS formulation

The gas-piston system (IPHS formulation)

From the Proposition on interconnection of IPHS we have
T

0]"f0o 0 0 0O F
{s{o o}H}:o 00 0 -1 v,
0 -1 ol o o 0o ofl(P)
1l o 1 0 o T

the velocity of the moving piston induces the heating of the gas and corresponds to the
thermodynamic driving force of the interconnection. Consequently v = % R=p= %v.

IPHS formulation

Using the interconnections the gas-piston system is formulated as the IPHS

0 1 0 0 F
-1 0 A —R|| v
“lo —A 0 o] |(-P

0O R 0 0 T

0. <-T- Q-

The total energy of the system is the sum of the mechanical energy and the internal
energy
1, 1, .5
H=Ho+U=—p +=Kq + U(s, V)
2m 2
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Conclusions

Some final remarks

o IPHS are thermodynamically coherent models which retain passivity features of PHS
and satisfy the second law.

@ The structure of IPHS has clear physical interpretation, characterizing the coupling
between energy storing and energy dissipating elements, furthermore, the irreversible
nature of the model is precisely expressed by the thermodynamic driving forces.

@ Using the BC-IPHS formulation and motivated by PBC for BC-PHS on 1D spatial
domains a BC that exponentially stabilizes the heat equation is proposed.

@ The existence of structural invariant functions has been characterized in order to
shape the closed-loop energy and assign the required closed-loop entropy.

o Future work aims to extend these control design techniques to a larger class of
BC-IPHS such as reacting fluids and tubular reactors.

Thanks!
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Boundary controlled IPHS
BC-IPHS

Boundary controlled IPHS with Yann Le Gorrec

An extension to distributed thermodynamical systems defined on one
dimensional spatial domains
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