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Context, motivation

I In many cutting-edge engineering applications, for example within the field of soft
or micro-nano robotics, process control, material sciences, energy production etc
... temperature plays a central role and needs to be explicitly taken into account.

MSMA based actuator
It is constituted by four components :

1. A control/supply electronic
device (control board + PWM
power supply, not depicted on
the Fig. 1),

2. A magnetic field generation
device (coil + core),

3. A MSMA sample and (iv) a
mechanical load.

Mobile mechanical load

MSMA into air-gap

Magnetic core with coil

Non-ferromagnetic frame

Load displacement direction

Magnetic
field

direction

u(t)

I(t)

=20 mm

x

m 

FIGURE: Simple MSMA Actuator.

Goal
The actuator is used for micro positioning purposes.
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Crystallographic phases

• Two possible crystallographic
forms/phases :
martensite/austenite

• The martensite phase can
appear in three different
martensitic variants
corresponding to the three
possible crystallographic
directions in the sample

• The strain can not only be
due to a martensite/austenite
phase transformation but also
due to a martensite
reorientation under magnetic
fields

M1 M2 

Austenite Martensite variants 

 
 

m1 
m2 

 

M3 
 

 
m3 

A 
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Figure: MSMA actuator.

Cf. Hector’s talk on IPHS for finite dimensional systems.
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Context, motivation

I Some examples of Distributed Parameter Systems for which the thermal domain
plays a central role  

 

 

 

High Pressure, High Temperature

Figure: Adsorption process

Dispersion (column), diffusion (pellet) and non-linear adsorption (crystal)
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Context, motivation

I Some examples of Distributed Parameter Systems for which the thermal domain
plays a central role

I Several attempts have been made to extend port Hamiltonian and Lagrangian
formulations to Irreversible Thermodynamic systems.

In this talk ...
We present some results on the extension of PHS and IPHS formulations to infinite
dimensional systems.
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Context, motivation

We focus on systems defined on a one dimensional spatial domain.

The aim is to generalize PHS formulations

∂x
∂t

=

(
P0−G0 + P1

∂

∂ζ

)
Hx(ζ, t)

with [
f∂
e∂

]
=

1
√

2

[
P1 −P1
I I

] [
H(b)x(b, t)
H(a)x(a, t)

]
(1)

to irreversible thermodynamic systems ...
????
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The isentropic fluid: the reversible case

We consider a 1-D isentropic fluid in Lagrangian coordinates, also known as p-system,
with [a, b] 3 ζ, a, b ∈ R, a < b. We choose as state variables
I the specific volume φ(ζ, t),
I the velocity υ(ζ, t) of the fluid.

System of two conservation laws :

∂φ

∂t
(ζ, t) =

∂υ

∂ζ
(ζ, t)

∂υ

∂t
(ζ, t) = −

∂p
∂ζ

(ζ, t)

where p(φ) is the pressure of the fluid. The total energy of the system is given by the
sum of the kinetic energy and internal energy:

H (υ, φ) =

∫ b

a

(
1
2
υ2 + u(φ)

)
dz
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The isentropic fluid: the reversible case

The variational derivative of the total energy yields δH
δυ

= υ and δH
δφ

= ∂u
∂φ

= −p and
the system may be written as the Hamiltonian system[

∂φ
∂t
∂υ
∂t

]
= P1

∂

∂ζ

([
δH
δφ
δH
δυ

])
, with P1 =

[
0 1
1 0

]
(2)

Considering as input/output (WB and WC can be derived from P1
[Le Gorrec et al., 2005]) :

[
v
y

]
=

[
WB
WC

]
δH
δφ

(b)
δH
δv (b)
δH
δφ

(a)
δH
δv (a)

 =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



−p(t , b)
υ(t , b)
−p(t , a)
υ(t , a)

 =


−p(t , b)
p(t , a)
υ(t , b)
υ(t , a)


We have

Ḣ(t) = y>(t)v(t)
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The non-isentropic fluid: the irreversible case

We now consider some viscous damping τ . The momentum balance reads

∂υ

∂t
(ζ, t) = −

∂p
∂ζ

(ζ, t)−
∂τ

∂ζ
(ζ, t) (3)

where
τ = −µ̂

∂υ

∂ζ

with µ̂ the viscous damping coefficient. It can be written as a dissipative port
Hamiltonian system[

∂φ
∂t
∂υ
∂t

]
=

[
0 1
1 0

]
∂

∂ζ

([
δH
δφ
δH
δυ

])
+

[
0 0
0 ∂

∂ζ

(
µ̂ ∂.
∂ζ

)]([ δH
δφ
δH
δυ

])
, (4)
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The non-isentropic fluid: the irreversible case

Splitting the dissipative operator we have[
∂φ
∂t
∂υ
∂t

]
=

[
0 1
1 0

]
∂

∂ζ

([
δH
δφ
δH
δυ

])
+

[
0
∂
∂ζ

]
µ̂
[
0 ∂

∂ζ

]([ δH
δφ
δH
δυ

])
, (5)

Which is equivalent to the DAE system: ∂φ∂t
∂υ
∂t
fe

 =

0 1 0
1 0 1
0 1 0

 ∂

∂ζ


 δH
δφ
δH
δυ
ee


 , (6)

with
ee = µ̂fe, with µ̂ > 0

The existence of solutions can be proven based on the existence of solutions of the
dissipation-free system by direct application of [Le Gorrec et al., 2005] but not stability.
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The non-isentropic fluid: the irreversible case

We can account for the thermal domain by considering Gibbs’ equation

du = −pdφ+Tds

where s denotes the entropy density and T the temperature. The total energy of the
system is still the sum of the kinetic and the internal energy but now depends on s

H (υ, φ, s) =

∫ b

a

(
1
2
υ2 + u (φ, s)

)
dz

From the conservation of the total energy and Gibbs’ equation ∂u
∂s = T we get

∂s
∂t

(ζ, t) =
µ̂

T

(
∂υ

∂ζ

)2
(ζ, t)
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The non-isentropic fluid: the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system

 ∂φ∂t
∂υ
∂t
∂s
∂t

 =


0 ∂(·)

∂ζ
0

∂(·)
∂ζ

0 ∂
∂ζ

(
µ̂
T

(
∂υ
∂ζ

)
(·)
)

0 µ̂
T

(
∂υ
∂ζ

)
∂(·)
∂ζ

0




δH
δφ
δH
δυ
δH
δs




Question: Is this operator formally skew symmetric ?

Question: Can you write down the energy balance ? What are the possible boundary
port variables ?
Question: Can you write down the entropy balance ? What are the possible boundary
port variables ?

Boundary controlled irreversible port Hamiltonian systems | Yann Le Gorrec and Hector Ramirez | October 9, 2025 13



The non-isentropic fluid: the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system

 ∂φ∂t
∂υ
∂t
∂s
∂t

 =


0 ∂(·)

∂ζ
0

∂(·)
∂ζ

0 ∂
∂ζ

(
µ̂
T

(
∂υ
∂ζ

)
(·)
)

0 µ̂
T

(
∂υ
∂ζ

)
∂(·)
∂ζ

0




δH
δφ
δH
δυ
δH
δs




Question: Is this operator formally skew symmetric ?
Question: Can you write down the energy balance ? What are the possible boundary
port variables ?

Question: Can you write down the entropy balance ? What are the possible boundary
port variables ?

Boundary controlled irreversible port Hamiltonian systems | Yann Le Gorrec and Hector Ramirez | October 9, 2025 13



The non-isentropic fluid: the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system

 ∂φ∂t
∂υ
∂t
∂s
∂t

 =


0 ∂(·)

∂ζ
0

∂(·)
∂ζ

0 ∂
∂ζ

(
µ̂
T

(
∂υ
∂ζ

)
(·)
)

0 µ̂
T

(
∂υ
∂ζ

)
∂(·)
∂ζ

0




δH
δφ
δH
δυ
δH
δs




Question: Is this operator formally skew symmetric ?
Question: Can you write down the energy balance ? What are the possible boundary
port variables ?
Question: Can you write down the entropy balance ? What are the possible boundary
port variables ?

Boundary controlled irreversible port Hamiltonian systems | Yann Le Gorrec and Hector Ramirez | October 9, 2025 13
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Answer: Yes ! even if the differential operator is modulated.

Answer: In case we do not have homogeneous BC:

dH
dt

= yT ν

and
dS
dt

=

∫ b

a
σdζ ≥ 0
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IPHS : General formulation

We introduce the Boundary Controlled Irreversible Port Hamiltonian System (BC-IPHS)
defined on a 1D spatial domain ζ ∈ [a, b], a, b ∈ R, a < b. The state variables of the
system are the n + 1 extensive variables. The following partition of the state vector
x ∈ Rn+1 shall be considered: the first n variables by x = [q1, . . . , qn]> ∈ Rn and the
entropy density by s ∈ R. Gibbs’ equation is equivalent to the existence of an energy
functional

H(x , s) =

∫ b

a
h (x(ζ), s(ζ)) dζ (7)

where h(x , s) is the energy density function. The total entropy functional is denoted by

S(t) =

∫ b

a
s(ζ, t)dζ (8)
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IPHS : General formulation

An infinite dimensional IPHS undergoing m irreversible processes is defined by

∂

∂t

[
x(ζ, t)
s(ζ, t)

]
=

[
P0 G0R0

−R>0 G>0 0

][ δH
δx (ζ, t)
δH
δs (ζ, t)

]
+

[
P1

∂(.)
∂ζ

∂(G1R1.)
∂ζ

R1
>G>1

∂(.)
∂ζ

gsrs
∂(.)
∂ζ

+ ∂(gsrs.)
∂ζ

][
δH
δx (ζ, t)
δH
δs (ζ, t)

]
(9)

where P0 = −P>0 ∈ Rn×n, P1 = P>1 ∈ Rn×n, G0 ∈ Rn×m, G1 ∈ Rn×m with m ≤ n

with Rl

(
x, δH

δx

)
∈ Rm×1, l = 0, 1, defined by

R0,i = γ0,i

(
x , z, δH

δx

)
{S|G0(:, i)|H}

R1,i = γ1,i

(
x , z, δH

δx

){
S|G1(:, i) ∂

∂ζ
|H
}

and
rs = γs

(
x , z, δH

δx

)
{S|H}

and γk,i

(
x , z, δH

δx

)
> 0, k = 0, 1; i ∈ {1, ...m}, γs

(
x , z, δH

δx

)
> 0 and gs(x),
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IPHS : General formulation

For any two functionals H1 and H2 of the type (7) and for any matrix differential
operator G we define the pseudo-brackets

{H1|G|H2} =

[
δH1
δx
δH1
δs

] [
0 G
−G∗ 0

][ δH2
δx
δH2
δs

]
,

{H1|H2} =
δH1

δs

> ( ∂

∂ζ

δH2

δs

) (10)

where G∗ denotes the formal adjoint operator of G.
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IPHS : General formulation

Remark 1:
Setting the matrices P1 and G1 to zero, reduces the PDE (11) to

d
dt

[
x(ζ, t)
s(ζ, t)

]
=

[
P0 G0R0(x)

−R0(x)>G>0 0

][ δH
δx (ζ, t)
δH
δs (ζ, t)

]

which is formally the definition of finite-dimensional IPHS in
[Ramirez et al., 2013a, Ramirez et al., 2013b] for the case m = 1 or
[Ramirez et al., 2014, Ramirez et al., 2016] for m > 1. In this sense the previous
definition is an infinite-dimensional extension of the definition of IPHS.

Remark 2:
Setting the matrices G0 and G1 to zero reduces the PDE (11) to

d
dt

[
x(ζ, t)
s(ζ, t)

]
=

[
P0 + P1

∂(.)
∂ζ

0
0 0

][
δH
δx (ζ, t)
δH
δs (ζ, t)

]

which is formally the definition of infinite-dimensional PHS.
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IPHS : General formulation

Definition 1
A Boundary Controlled IPHS (BC-IPHS) is an infinite dimensional IPHS

∂

∂t

[
x(ζ, t)
s(ζ, t)

]
=

[
P0 G0R0

−R>0 G>0 0

][ δH
δx (ζ, t)
δH
δs (ζ, t)

]
+

[
P1

∂(.)
∂ζ

∂(G1R1.)
∂ζ

R1
>G>1

∂(.)
∂ζ

gsrs
∂(.)
∂ζ

+ ∂(gsrs.)
∂ζ

][
δH
δx (ζ, t)
δH
δs (ζ, t)

]
(11)

Augmented with the boundary port variables

v(t) = WB

[
e(t , b)
e(t , a)

]
, y(t) = WC

[
e(t , b)
e(t , a)

]
(12)

as linear functions of the modified effort variable

e(ζ, t) =

[
δH
δx (ζ, t)

R(x, δH
δx ) δH

δs (ζ, t)

]
, with R

(
x,
δH
δx

)
=
[
1 R1(x, δH

δx ) rs(x, δH
δx )
]>

(13)
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IPHS : General formulation

Furthermore

WB =
[

1√
2

(Ξ2 + Ξ1Pep) Mp
1√
2

(Ξ2 − Ξ1Pep) Mp
]
,

WC =
[

1√
2

(Ξ1 + Ξ2Pep) Mp
1√
2

(Ξ1 − Ξ2Pep) Mp
]
,

where Mp =
(
M>M

)−1 M>, Pep = M>PeM and M ∈ R(n+m+2)×k is spanning the
columns of Pe ∈ Rn+m+2 of rank k , defined by

Pe =


P1 0 G1 0
0 0 0 gs

G>1 0 0 0
0 gs 0 0

 (14)

and where Ξ1 and Ξ2 in Rk×k satisfy Ξ>2 Ξ1 + Ξ>1 Ξ2 = 0 and Ξ>2 Ξ2 + Ξ>1 Ξ1 = I.
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IPHS : General formulation

First law of Thermodynamics
The total energy balance is

Ḣ = y(t)>v(t)

which leads, when the input is set to zero, to Ḣ = 0 in accordance with the first law of
Thermodynamics.

Sketch of the proof

dH
dt

=

∫ b

a

[
δH
δx

T δH
δs

] [ dx
δt
ds
δt

]
dζ =

∫ b

a

[
δH
δx

T δH
δs

]
Je

[
δH
δx
δH
δs

]
dζ = vT y
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IPHS : General formulation
Second law of Thermodynamics
The total entropy balance is given by

Ṡ =

∫ b

a
σt dζ + y>S vs

where ys and vs are the entropy conjugated input/output and σt is the total internal
entropy production. This leads, when the input is set to zero, to Ṡ =

∫ b
a σt dζ ≥ 0 in

accordance with the second law of Thermodynamics.

Sketch of the proof

Ṡ =

∫ b

a

∂s
∂t

dζ

=

∫ b

a

(
R0(x)>G>0

δH
δx

+ R1(x)>G>1
∂

∂ζ

δH
δx

+

gsrs(x)
∂

∂ζ

δH
δs

+
∂

∂ζ

(
gsrs(x)

δH
δx

))
dζ

=

∫ b

a
σt dζ − (fs(b, t)− fs(a, t))
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Back to 1D fluid

Recalling the 1D fluid model ∂φ∂t
∂υ
∂t
∂s
∂t

 =


0 ∂(·)

∂ζ
0

∂(·)
∂ζ

0 ∂
∂ζ

(
µ̂
T

(
∂υ
∂ζ

)
(·)
)

0 µ̂
T

(
∂υ
∂ζ

)
∂(·)
∂ζ

0




δH
δφ
δH
δυ
δH
δs




P0 = 0,G0 = 0, gs = 0, P1 =

[
0 1
1 0

]
and G1 =

[
0
1

]
with x =

[
φ
υ

]
and

R11 = γ1{S|G1(:, 1) ∂
∂z |H} with γ1 = µ̂

T > 0. In this case n = 2, m = 1
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Back to 1D fluid

The boundary port variables may be computed as follows, starting with

Pe =


P1 0 G1 0
0 0 0 gs

G>1 0 0 0
0 gs 0 0

 =


0 1 0 0 0
1 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0



of rank k = 2 which gives M =

[ 1
2 0 0 1

2 0
0 1 0 0 0

]>
, MP =

[
0 1 0 0 0
1 0 0 1 0

]
and

Pep =

[
0 1
1 0

]
. Choosing the parametrization

Ξ1 =
1
√

2

[
1 0
1 0

]
, Ξ2 =

1
√

2

[
0 1
0 −1

]
define the following boundary inputs and outputs

v(t) =

[
−p(t , b) + µ̂

T
∂υ
∂z (t , b)

p(t , a)− µ̂
T
∂υ
∂z (t , a)

]
, y(t) =

[
υ(t , b)
υ(t , a)

]
.
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1D fluid in Eulerian coordinates

If we now consider a 1-D isentropic fluid in Eulerian coordinates, with
[a, b] 3 ζ, a, b ∈ R, a < b. We choose as state variables
I the mass density ρ(ζ, t),
I the velocity υ(ζ, t) of the fluid.

System of two conservation laws (coming from the use of material derivative
D
Dt (.) = ∂

∂t (.) + υ ∂
∂ζ

(.)) and from Gibbs equation:

∂ρ

∂t
(ζ, t) = −

∂

∂ζ
(ρυ) (ζ, t)

∂υ

∂t
(ζ, t) = −

∂

∂ζ

(
1
2
υ2 + u +

p
ρ

)
(ζ, t) +

T
ρ

∂s
∂ζ

(ζ, t)−
1
ρ

∂

∂ζ

(
τ

ρ

)
(ζ, t)

and

∂s
∂t

(ζ, t) = −υ
∂s
∂ζ

(ζ, t)−
τ

ρT
∂υ

∂ζ
(ζ, t)
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1D fluid in Eulerian coordinates

Leading to the IPHS representation
∂ρ

∂t
∂υ

∂t
∂s
∂t

 =


0 −

∂ (·)
∂ζ

0

−
∂ (·)
∂ζ

0
1
ρ

∂s
∂ζ

(ζ, t) +
1
ρ

∂

∂ζ

(
µ

ρT
∂υ

∂ζ
.

)
0 −

1
ρ

∂s
∂ζ

(ζ, t) +
µ

ρT
∂υ

∂ζ
∂
∂ζ

(
1
ρ .
)

0






δH
δρ
δH
δυ
δH
δs




with

f∂ =

[
−υ(b, t)
υ(a, t)

]
and e∂ =


(
ρ

(
1
2
υ2 + h

))
(b, t)− µ

∂υ

∂ζ
(b, t)(

ρ

(
1
2
υ2 + h

))
(b, t)− µ

∂υ

∂ζ
(a, t)


and h = u +

p
ρ
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Heat equation
 

 

 

 

Figure: Heat conduction in a bar

Balance equation on u
∂u
∂t

= −
∂

∂ζ

(
−λ

∂T
∂ζ

)
where λ denotes the heat conduction coefficient.
Question : Deduce from Gibbs’ equation du = Tds the IPHS formulation of the heat
equation.

Question : Write the balance equation on the energy/entropy.
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Heat equation
 

 

 

 

Figure: Heat conduction in a bar

Balance equation on u
∂u
∂t

= −
∂

∂ζ

(
−λ

∂T
∂ζ

)
where λ denotes the heat conduction coefficient. From Gibbs’ equation du = Tds and

∂s
∂t

= −
1
T
∂

∂ζ

(
−λ

∂T
∂ζ

)
or alternatively

∂s
∂t

=
∂

∂ζ

(
λ

T
∂T
∂ζ

)
+

λ

T 2

(
∂T
∂ζ

)2

One can notice that : T = δU
δs where U =

∫ b
a udζ.
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Heat equation

IPHS formulation

∂s
∂t

=
λ

T 2

∂T
∂ζ

∂

∂ζ

(
δU
δs

)
+

∂

∂ζ

(
λ

T 2

∂T
∂ζ

(
δU
δs

))
which is equivalent to (11) where P0 = 0, P1 = 0, G0 = 0, G1 = 0, gs = 1 and

rs = γs{S|U} with γs = λ
T 2 and {S|U} = ∂T

∂ζ
. In this case Pe = 1

2

[
0 1
1 0

]
, n = 1 and

m = 1. Choosing Ξ1 = 1√
2

[
1 0
1 0

]
, Ξ2 = 1√

2

[
0 1
0 −1

]
the boundary inputs and

outputs of the system are

v(t) =

 (λs
T
∂T
∂ζ

)
(t , b)

−
(
λs
T
∂T
∂ζ

)
(t , a)

 , y(t) =

[
T (t , b)
T (t , a)

]
,

respectively the entropy flux and the temperature at each boundary.
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Outline

Context, motivation

A simple but instructive example

Infinite dimensional irreversible port Hamiltonian systems (IPHS)

Conclusions

Boundary controlled irreversible port Hamiltonian systems | Yann Le Gorrec and Hector Ramirez | October 9, 2025 31



In this talk we have:
I introduced a new class of boundary controlled IPHS.
I illustrated it on some examples (fluid and heat equations).

Current research lines:
I extend IPHS formulation to multidimensional systems such as fluids.
I extend the traditional control design techniques to thermally controlled BC-IPHS.
I use this formalism to overcome some traditional difficulties associated to

irreversible Thermodynamics.
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Thank you for your attention !
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