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Introduction to lecturer and material

▶ The lecturer

What will we cover?

1. Dirac structures on finite-dimensional spaces.

1.1 General definition and properties
1.2 Defining continuous- and discrete-time systems via a Dirac

structure; ODE’s, DAE’s

2. Dirac structures on infinite-dimensional spaces.

2.1 Gently introduction
2.2 Class of Dirac structures
2.3 Link to operators and PDE’s.

3. Restricting a Dirac structure on infinite-dimensional spaces to
finite-dimensional space (numerics).

4. Existence of solution of pH-PDE’s.

4.1 Homogeneous
4.2 Inhomogeneous
4.3 Transfer functions
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Dirac structures, general

Let E and F be real (complex) two linear spaces with a bilinear
product

⟨f | e⟩ ∈ R (or C).

We assume that this product is non-degenerated, that is

⟨f | e⟩ = 0 ∀e ∈ E ⇒ f = 0,

⟨f | e⟩ = 0 ∀f ∈ F ⇒ e = 0.

E is called the effort space and F is the flow space. The bond
space B is defined as F × E .
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Dirac structures, general

On the bond space B = F × E we define the symmetrised pairing

〈(
f1
e1

)
,

(
f2
e2

)〉

B
= ⟨f2 | e1⟩+ ⟨f1 | e2⟩.

For V ⊆ B we define

V ⊥ =

{(
f1
e1

)
∈ B |

〈(
f1
e1

)
,

(
f2
e2

)〉

B
= 0 for all

(
f2
e2

)
∈ V

}
.

Definition
The linear subspace D of B is a Dirac structure if D⊥ = D. □
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Dirac structures, general properties

If D is a Dirac structure, then

⟨f | e⟩ = 0 for all

(
f
e

)
∈ D.

This has (may have) the interpretation of power conservation, see
later.



Dirac structures, finite-dimensional

For finite-dimensional spaces, the following gives a very useful
characterisation of a Dirac structure.

Lemma
For F = E = Rn with

⟨f | e⟩ = f⊤e

we have that D is a Dirac structure if and only if there exists two
n× n matrices F and E, such that

1. D = ran
(
F
E

)
;

2. The matrix
(
F
E

)
has full rank (rank equals n);

3. F⊤E + E⊤F = 0, or in other words F⊤E is skew-adjoint
(anti-symmetric).

Question Formulate a similar result if ⟨f | e⟩ = f⊤Qe. Conditions
on Q?
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Dirac structures, finite-dimensional

Proof of Lemma
Assume that D ⊂ Rn × Rn is a Dirac structure. Then

▶ It is a linear subspace, so there exist matrices F and E of size
(n×m) such that D = ran

(
F
E

)
and

(
F
E

)
is of full rank (rank

equals m).

▶ The relation
(
f2
e2

)
⊥ ran

(
F
E

)
is a linear equation with 2n

unknown and m conditions. Hence the dimension of the
solution set is 2n−m-dimensional. However, since the
solution set equals D we have 2n−m = m. Thus m = n.

▶ The equality ⟨f | e⟩ = 0 is equivalent to ℓ⊤F⊤Eℓ = 0 for all
ℓ ∈ Rn. Thus ℓ⊤

[
F⊤E + E⊤F

]
ℓ = 0. Since F⊤E +E⊤F is

symmetric, we conclude that F⊤E + E⊤F = 0.
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Dirac structures, finite-dimensional

Proof of Lemma, continued.
Let D = ran

(
F
E

)
with

(
F
E

)
a 2n× n matrix of rank n, and with

F⊤E + E⊤F = 0. We have to show that D is a Dirac structure.

▶ For
(
f2
e2

)
∈ D we have for any

(
f1
e1

)
∈ D that

〈(
f1
e1

)
,

(
f2
e2

)〉

B
= ⟨f2 | e1⟩+ ⟨f1 | e2⟩

= ℓ⊤2 F
⊤Eℓ1 + ℓ⊤1 F

⊤Eℓ2

= ℓ⊤2 F
⊤Eℓ1 + ℓ⊤2 E

⊤Fℓ1 = 0.

Thus
(
f2
e2

)
∈ D⊥, and so D ⊆ D⊥.

▶ By construction dim(D⊥) = 2n− n (dimension space minus
number of conditions) = n = dim(D).
Combined with D ⊆ D⊥, we find that D = D⊥.
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Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., F = E = Rn with
⟨f | e⟩ = f⊤e.
We have seen that every Dirac structure can be written as
D = ran

(
F
E

)
with

(
F
E

)
a 2n× n matrix of rank n, and with

F⊤E + E⊤F = 0. This is known as the image representation.

Lemma
Let the Dirac structure on Rn × Rn be given as D = ran

(
F
E

)
with

the above condition on E,F . Then D has the kernel representation

D = ker
(
E⊤ F⊤) .

Question Under which condition(s) is D = ker
(
E1 F1

)
a Dirac

structure? Furthermore, what is its image representation?
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Dirac structures, finite-dimensional

Proof of the Lemma
For ( fe ) ∈ D we have

(
E⊤ F⊤)

(
f
e

)
=
(
E⊤ F⊤)

(
F
E

)
ℓ = 0.

Hence D ⊆ ker
(
E⊤ F⊤).

By checking dimensions, we find that these sets are equal. □
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Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., F = E = Rn with
⟨f | e⟩ = f⊤e. We have the following alternative characterisation
of a Dirac structure.

Lemma
D = ran

(
F
E

)
is a Dirac structure if and only if there exists a

unitary matrix Θ such that D = ran
(−I+Θ

I+Θ

)
.

Proof: Using that F TE + ETF = 0, we find that

(E + F )T (E + F ) = (E − F )T (E − F ). (∗)

So if (E − F )v = 0, then (E + F )v = 0, and thus Ev = Fv = 0.
Since

(
F
E

)
has full rank, we find v = 0. Thus E − F is invertible.

Define Θ = (E + F )(E − F )−1, then (∗) implies that Θ is unitary.

Now D = ran
(
F
E

)
= ran

(
2F (E−F )−1

2E(E−F )−1

)
= ran

(−I+Θ
I+Θ

)
. □
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Dirac structures, dynamical interpretation

We assume F = E = Rn with ⟨f | e⟩ = f⊤e.

Example

If we take F = J , E = I, with J⊤ = −J , then by the above

D = ker
(
I⊤ J⊤) = ker

(
I −J

)

defines a Dirac structure.
So the solutions of ẋ(t) = JHx(t) (H = H⊤) can be seen as

( fe ) =
(

ẋ(t)
Hx(t)

)
∈ D and satisfy

d

dt

[
1

2
x(t)⊤Hx(t)

]
= ẋ(t)⊤Hx(t) = f⊤e = 0.

Thus H(t) := 1
2x(t)

⊤Hx(t) is constant along solutions of the
differential equation. □
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Dirac structures, dynamical interpretation

Note that we did not need conditions on H, except from symmetry.

Choosing H = diag(1,−1) gives an unstable system, Check.
The previous example can be extended to non-linear o.d.e.’s.

Example

Let D = ran
(
F
E

)
with

(
F
E

)
a 2n× n matrix of rank n, and with

F⊤E = −E⊤F .
With the C1-function H : Rn 7→ R, we define the implicit
differential equation (

ẋ(t)
∂H
∂x

(x(t))

)
∈ D.

Then along solutions, there holds d
dtH(x(t)) = 0. □
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Dirac structures, dynamical interpretation

Note that the implicit differential equation can be made explicitly
as

E⊤ẋ(t) = −F⊤∂H

∂x
(x(t)).

Since E needs not to be invertible, this includes DAE’s.
The above differential equation needs not to have solutions (for all
initial conditions). For instance, take E = 0 and F = I, then the
diff. eqn. becomes 0 = −∂H

∂x (x(t)).
So a Dirac structure alone does not guarantee existence nor
stability.
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Dirac structures, dynamical interpretation

Since there is no time in a Dirac structure, we can choose our time
axis. We assume F = E = Rn with ⟨f | e⟩ = f⊤e.

Example

For J ∈ Rn×n satisfying J⊤ = −J , define the Dirac structure

D = ker
(
I⊤ J⊤) = ker

(
I −J

)
.

So the solutions of x(n+ 1)− x(n) = JH [x(n+ 1) + x(n)]

(H = H⊤) can be seen as ( fe ) =
(

x(n+1)−x(n)
H[x(n+1)+x(n)]

)
∈ D and satisfy

x(n+ 1)THx(n+ 1)− x(n)Hx(n) =

[x(n+ 1)− x(n)]T H [x(n+ 1) + x(n))] = 0.

Thus H(n) := x(n)⊤Hx(n) is constant along solutions of the
difference equation. □
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Dirac structures, dynamical interpretation

Note that if I − JH is invertible, then the implicit difference
equation

x(n+ 1)− x(n) = JH [x(n+ 1) + x(n)]

can be made explicite. Namely, to

x(n+ 1) = (I − JH)−1(I + JH)x(n).

Question Prove that under the conditions in the example, the
matrix I − JH is invertible.



Dirac structures, dynamical interpretation

In the previous examples of dynamical systems we choose f to be
the change of the state variable x. However, this is not dictated by
the Dirac structure. Other choices are possible.



Dirac structures, dynamical interpretation

Example

We split our effort and flow space, and choose J as

f =
(

ϕ1

ϕ2

)
, e = ( ε1ε2 ) , J =

(
J11 J12
−J⊤

12 0

)
.

For ϕ1 = ẋ(t), ε2 = Rϕ2 and ε1 = Hx(t), f = Je becomes

(
ẋ(t)
ϕ2

)
=
(

J11 J12
−J⊤

12 0

)(
Hx(t)
Rϕ2

)
.

Hence x satisfies ẋ(t) = (J11 − J12RJ⊤
12)Hx(t). So

ẋ(t)⊤Hx(t) + ϕ⊤
2 Rϕ2 = f⊤e = 0.

When R ≥ 0 this gives dissipation of H(t) = 1
2x(t)

⊤Hx(t). □
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Example

We split our effort and flow space, and choose J as

f =
(
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ϕ2

)
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(
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)
.
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=
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ẋ(t) = J11Hx(t) +Bu(t)

y(t) = B⊤Hx(t) + J22u(t)

satisfying ẋ(t)⊤Hx(t)− y(t)⊤u(t) = f⊤e = 0. □
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For ϕ1 = ẋ(t), ϕ2 = −y(t), ε2 = u(t) and ε1 = Hx(t), f = Je
becomes (
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Dirac structures and port-Hamiltonian systems

D
((

φ1

φ2

)
,

(
ε1
ε2

))
ε1

φ1

ε2

φ2

H
ẋ(t)

Hx(t)u

−y

Figure: Dirac structure connected to storage, and input, output

The system

ẋ(t) = J11Hx(t) +Bu(t)

y(t) = B⊤Hx(t) + J22u(t)

is a (standard) example of a port-Hamiltonian system, with
H(t) = 1

2x(t)
⊤Hx(t) the Hamiltonian and (u, y) the ports.



Intermezzo



Intermezzo: Dirac structures and dual spaces

On our bond space B = F ×E we have the bilinear relation ⟨f | e⟩.

If we define (for fixed f) the map

ℓf : E 7→ R as ℓf (e) = ⟨f | e⟩,

then this is a linear map from E to R. Thus there exists a (unique)
element ε ∈ E ′ (the algebraic dual of E) such that

⟨f | e⟩ = ⟨ε, e⟩E ′×E .

Hence we can define the “identification” map

Id : F 7→ E ′ as Id(f) = ε.

So F can be interpreted/identified as a subspace of E ′. Similarly,
we can interpret E as a subspace of F ′.
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Intermezzo: Dirac structures and dual spaces

When F and E are normed, linear spaces, and the bilinear product
satisfies: There exists a m > 0 such that for all f ∈ F and e ∈ E
there holds

|⟨f | e⟩| ≤ m∥f∥∥e∥.
Then the map

ℓf : E 7→ R defined as ℓf (e) := ⟨f | e⟩,

is a continuous/bounded linear map from E to R.

Thus there exists a (unique) element ε ∈ E∗ (the topological dual
of E) such that

⟨f | e⟩ = ⟨ε, e⟩E∗×E .

So F can be interpreted/identified as a subspace of E∗. Similarly,
we can interpret E as a subspace of F∗.
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End of intermezzo



Dirac structures, infinite-dimensional

We have considered E and F to be finite-dimensional, i.e., Rn.
Other (finite-dimensional) choices are possible, e.g. a tangent
space and co-tangent space (see intermezzo).

Since the dimension is not “present” in the definition of a Dirac
structure, we can take E and F to be infinite-dimensional.
There are many infinite-dimensional spaces, i.e., function and/or
sequence spaces, and so we take a simpler approach, and try to see
if we can come up with an example in which

V =

{(
f
e

)
| f = Je

}

is an infinite-dimensional Dirac structure.
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Dirac structures, infinite-dimensional

Classroom question:
If f and e are two (scalar) functions, what would be a logical
choice for ⟨f | e⟩?

A choice is

⟨f | e⟩ =
∫

Ω
f(ζ)e(ζ)dζ.

For simplicity, we take Ω = [a, b] ⊆ R.
Classroom question: Taking this bilinear product, can we think of
an J such that {f = Je} is a Dirac structure?
In particular, we need that

⟨f | e⟩ =
∫ b

a
f(ζ)e(ζ)dζ =

∫ b

a
(Je)(ζ)e(ζ)dζ = 0.

What about Je = ė = de
dζ ?
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Dirac structures, infinite-dimensional

We calculate

⟨f | e⟩ =
∫ b

a
(Je)(ζ)e(ζ)dζ =

∫ b

a
ė(ζ)e(ζ)dζ

=

∫ b

a

1

2

d

dζ

(
e(ζ)2

)
dζ =

1

2
e(b)2 − 1

2
e(a)2.

So this is only zero when we put (extra) conditions on e.
For instance, e(b) = e(a) = 0, or e(b) = e(a), or e(b) = −e(a)
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Dirac structures, infinite-dimensional

Question:
Given F = C(a, b) and E = C1(a, b). Is

D00 =

{(
f
e

)
∈ F × E | f =

de

dζ
, e(a) = 0 = e(b)

}

a Dirac structure?

Answer: Calculating D⊥
00;

〈(
f2
e2

)
|
(
f
e

)〉
= 0 ∀

(
f
e

)
∈ D00 ⇔

∫ b

a
[f2(ζ)− ė2(ζ)] e(ζ)dζ = 0 ∀e ∈ C1(a, b).

Thus f2(ζ) = ė2(ζ), but No boundary conditions. So D⊥
00 ̸= D00.
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[f2(ζ)− ė2(ζ)] e(ζ)dζ = 0 ∀e ∈ C1(a, b).
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[f2(ζ)− ė2(ζ)] e(ζ)dζ + e2(b)e(b)− e2(a)e(a)

=

∫ b

a
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Dirac structures, link to pde’s

So Dp =
{
( fe ) ∈ F × E | f = de

dζ , e(a) = e(b)
}
is a Dirac

structure. As we did in the finite-dimensional case we can link a
differential equation to it, by choosing f = ẋ(t) and e = Hx(t).

Since e and f depend on ζ and thus x(t) depends on ζ as well, we
now have to write f = ∂x

∂t .
(f, e) ∈ Dp is now the same as writing H(·)x(·, t) ∈ C1(a, b) and

∂x

∂t
(ζ, t) =

∂

∂ζ
[H(ζ)x(ζ, t)] , H(a)x(a, t) = H(b)x(b, t).

So a PDE with Boundary Conditions.
The Dirac structure gives (as before) that along solutions we have

H(t) = 1
2

∫ b
a x(ζ, t)H(ζ)x(ζ, t)dζ is constant.
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The Dirac structure gives (as before) that along solutions we have

H(t) = 1
2

∫ b
a x(ζ, t)H(ζ)x(ζ, t)dζ is constant.
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Dirac structures, link to pde’s

Again we have seen that the Dirac structure implies properties of
the solution of a differential equation, but do we have solutions?

We take H = 1. So our scalar PDE becomes

∂x

∂t
(ζ, t) =

∂x

∂ζ
(ζ, t), x(a, t) = x(b, t).

The solution of this PDE is

x(ζ, t) = x0,ext(t+ ζ)

with x0,ext the periodic extension of x0 (the initial condition).
Even when x0 ∈ E = C1(a, b), x(t, ·) ̸∈ E!
Once more we see that a Dirac structure does not guarantee
existence of solutions. More later.
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Dirac structures, P1 class

We have studied Dirac structures for scalar functions, and we can
easily extend it to vector valued functions.

So the bilinear product becomes for f(ζ), e(ζ) ∈ Rn, ζ ∈ [a, b]

⟨f | e⟩ =
∫ b

a
f(ζ)⊤e(ζ)dζ.

Question
Simplify ⟨f | e⟩ when f = P1

de
dζ with P⊤

1 = P1 ∈ Rn×n.
Answer

∫ b

a

[
P1

de

dζ
(ζ)

]⊤
e(ζ)dζ =

1

2

[
e(b)⊤P1e(b)− e(a)⊤P1e(a)

]
.
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Dirac structures, P1 class

So to make V = {f = P1
de
dζ } into a Dirac structure, we have to

add boundary conditions.

Therefor we define boundary flow and effort

(
f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)

︸ ︷︷ ︸
R0

(
e(b)
e(a)

)
.

Question: Show that for f = P1
de
dζ + P0e, with Pk ∈ Rn×n,

P⊤
1 = P1, P

⊤
0 = −P0, there holds

⟨f | e⟩ − f⊤
∂ e∂ = 0.

Question: For F = C([a, b];Rn) and E = C1([a, b];Rn) define a
Dirac structure around f = P1

de
dζ + P0e. Furthermore, prove that

your candidate Dirac structure is a Dirac structure.
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Dirac structures, P1, P0 class

Question: For F = C([a, b];Rn)×Rn and E = C1([a, b];Rn)×Rn

define a Dirac structure around f = P1
de
dζ + P0e. Furthermore,

prove that your candidate Dirac structure is a Dirac structure.

The PDE associated to the above Dirac structure will be
H(·)x(·, t) ∈ C1([a, b];Rn) and

∂x

∂t
(ζ, t) = P1

∂

∂ζ
[H(ζ)x(ζ, t)] + P0H(ζ)x(ζ, t)

with (in)homogeneous boundary conditions.
The existence problem which we found in the scalar case remains.
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Dirac structures, P1, P0 class

As an example of the P1 class we take n = 2, P0 = 0,

P1 =

(
0 1
1 0

)
, H(ζ) =

(
c 0
0 c

)
.

Thus

∂

∂t

(
x1
x2

)
=

∂x

∂t
=

(
0 1
1 0

)
∂

∂ζ

[(
c 0
0 c

)
x

]
=

∂

∂ζ

(
cx2
cx1

)
.

For x1 this becomes

∂2x1
∂t2

=
∂

∂t

[
∂x1
∂t

]
=

∂

∂t

[
∂cx2
∂ζ

]
= c

∂

∂ζ

[
∂x2
∂t

]
= c2

∂2x1
∂ζ2

The wave equation.
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Dirac structures, higher spatial dimension.

We have only discussed (potential) infinite-dimensional Dirac
structures in one spatial variable. However, there is no
fundamental reason for that.

For instance, consider

V =
{(

f1
f2

)
=
(

0 div
grad 0

)
( e1e2 )

}

with Ω ⊂ R3, and e1 ∈ C1(Ω;R), e2 ∈ C1(Ω;R3), etc.

⟨f | e⟩ =
∫

Ω
e1div(e2) + e⊤2 grad(e1)

=

∫

Ω
div(e1e2) =

∫

Γ
(e1e2)

⊤n,

where Γ is the boundary of Ω and n is the outward unit normal.
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Dirac structures, so far.

We have seen that using functions paces, we can define Dirac
structures. Furthermore, we can link these infinite-dimensional
Dirac structures to (partial) differential equations. However, we
have trouble (even in simple cases) to obtain existence of solutions
for these PDE’s.

To solve this matter we take a more abstract/functional analytic
point of view.
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Dirac structure, operators

For finite-dimensional spaces we had that {f = Je} defines a
Dirac structure if and only if J⊤ = −J . How for
infinite-dimensional spaces?

Let X be a Hilbert space with inner product ⟨·, ·⟩, and let
Q : dom(Q) ⊆ X 7→ X be a densely defined linear operator.

Definition
The adjoint, Q∗, of Q is defined as follows

dom(Q∗) = {z ∈ X | ∃w ∈ X s.t. ⟨Qx, z⟩ = ⟨x,w⟩, ∀x ∈ dom(Q)}

For z ∈ dom(Q∗), we define Q∗(z) = w. □

Definition
▶ Q is skew-adjoint when Q∗ = −Q.

▶ Q is self-adjoint when Q∗ = Q.
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Dirac structure, operators

Theorem
Let F = E = X, with X a Hilbert space, and let ⟨f | e⟩ = ⟨f, e⟩X .
Then

D = {( fe ) ∈ F × E | f = Je, e ∈ dom(J)}
is a Dirac structure if and only if J is skew-adjoint.

Proof: Calculating D⊥;
〈(

f2
e2

)
|
(
f
e

)〉
= 0 ∀

(
f
e

)
∈ D ⇔

⟨f2, e⟩X + ⟨Je, e2⟩X = 0 ∀e ∈ dom(J).

So e2 ∈ dom(J∗) and f2 = −J∗(e2). □
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Dirac structure, revisited

We have seen that

Dp =

{(
f
e

)
∈ C(a, b)× C1(a, b) | f =

de

dζ
, e(a) = e(b)

}

is a Dirac structure. However,

▶ F ̸= E ;
▶ F nor E is a Hilbert space,

but f = de
dζ looks very similar to f = Je. Furthermore, the bilinear

product
∫ b
a f(ζ)e(ζ)dζ looks very similar to an inner product.

Namely, the inner product of L2(a, b)-functions.
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Dirac structures, from infinite- to finite-dimensional

Given an infinite-dimensional Dirac structure of the form

D∞ =

{(
f
e

)
∈ F × E | f = Je

}

we can easily obtain a finite-dimensional Dirac structure. Therefor
we choose e1, · · · , eN (independent) elements of E , and define
fk = Jek, k = 1, · · ·N . Next define

▶ EN := span{e1, · · · , eN} ⊂ E ;
▶ FN := span{f1, · · · , fN} ⊂ F ;

▶ For (f, e) ∈ FN × EN the bilinear product is defined as
⟨f | e⟩N := ⟨f | e⟩.

▶ DN :=

{(
f
e

)
∈ FN × EN | f = Je

}
⊂ D

Question: Prove that DN is a Dirac structure in FN × EN if and
only if dimFN = N .



Dirac structures, from infinite- to finite-dimensional

As an example we consider

Dper =

{(
f
e

)
∈ L2(0, 1)×H1(0, 1) | f =

de

dζ
, e(0) = e(1)

}
.

We choose N ∈ N and define h = N−1. Furthermore ζk := k ∗ h,
k = 0, 1, · · · , N . With this we define “hat”functions

ek(ζ) =





N(ζ − ζk−1) ζ ∈ [ζk−1, ζk];

N(ζk+1 − ζ) ζ ∈ [ζk, ζk+1];

0 elsewhere.

h 10

1 1ek

ζk−1 ζk ζk+1

eN eN

Figure: The hat-functions, ek



Dirac structures, from infinite- to finite-dimensional

From fk = Jek = dek
dζ , we find

fk(ζ) =





N ζ ∈ (ζk−1, ζk);

−N ζ ∈ (ζk, ζk+1);

0 elsewhere.

h 1

N

−N −N

N
fk

fk

ζk

fN

fN

Figure: The step-functions, fk

It is easy to show that dim
(
spank=1,··· ,N{fk}

)
= N , and thus

DN = {( fe ) ∈ FN × EN | f = Je} is a Dirac structure
(finite-dimensional).
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Dirac structures, from infinite- to finite-dimensional

Since dim EN = dimFN = N , we can define an equivalent Dirac
structure on RN × RN .
For e ∈ EN and f ∈ FN given as e(ζ) =

∑N
k=1 akek(ζ) and

f(ζ) =
∑N

k=1 bkfk(ζ), respectively, we define

e⃗ =




a1
...
aN


 f⃗ =




b1
...
bN


 .

By definition, fk = Jek. Thus the Dirac structure, becomes

DN =
{(

f⃗
e⃗

)
∈ RN × RN | f⃗ = e⃗

}
.

Question: Something weird and/or wrong?
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Dirac structures, from infinite- to finite-dimensional

A straightforward calculation gives

⟨fk | eℓ⟩ =





−1
2N

2 k = ℓ+ 1
1
2N

2 k = ℓ− 1

0 elsewhere

So
⟨f | e⟩ ≠ f⃗⊤e⃗,

but
⟨f | e⟩ = f⃗⊤Qe⃗

with Qk,l = ⟨fk | eℓ⟩. (see also Question on Page 7)
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Introduction and notation

In this part we go into existence theory for linear PDE’s. We will
focus on those on a one-dimensional spatial domain, and will study
homogeneous and inhomogeneous equations.

Some notation:

▶ In this part we denote the one dimensional spatial domain by
[0, ℓ]. Hence we shifted it by a. However, we have kept units
(which can be lost when choosing the interval [0, 1]).

▶ The norm on the inner Hilbert space X we denote by ∥ · ∥ and
the inner product by ⟨·, ·⟩
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Solutions of PDE’s

To introduce and motivate solutions of a PDE, we consider the
following simple PDE with ζ ∈ [0, ℓ] and t ≥ 0

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), w(ℓ, t) = 0, w(ζ, 0) = w0(ζ).

We call a function w : [0, ℓ]× [0,∞) → R a classical solution, if w
is continuously differentiable, and for all t ≥ 0, ζ ∈ [0, ℓ] the
differential equation, initial and boundary condition are satisfied.

Question: Determine the classical solution for w0(ζ) = sin(πζ/ℓ).

History has shown that this concept is too restrictive, and that a
weaker concept of a solution was needed. We illustrate this for the
same PDE.
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Solutions of PDE’s

We take a smooth test function ϕ(ζ) and integrate over the spatial
domain.

∫ ℓ

0
ϕ(ζ)

∂w

∂t
(ζ, t)dζ =

∫ ℓ

0
ϕ(ζ)

∂w

∂ζ
(ζ, t)dζ (PDE)

(int. by parts) = [ϕ(ζ)w(ζ, t)]ℓ0 −
∫ ℓ

0
ϕ̇(ζ)w(ζ, t)dζ

(b.c.) = − ϕ(0)w(0, t)−
∫ ℓ

0
ϕ̇(ζ)w(ζ, t)dζ.

If we take test functions satisfying ϕ(0) = 0, we find
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Solutions of PDE’s

d

dt

∫ ℓ

0
ϕ(ζ)w(ζ, t)dζ =

∫ ℓ

0
ϕ(ζ)

∂w

∂t
(ζ, t)dζ = −

∫ ℓ

0
ϕ̇(ζ)w(ζ, t)dζ.

Integrate this expression with respect to time from t = 0 to t = tf

∫ ℓ

0
ϕ(ζ)w(ζ, tf )dζ−

∫ ℓ

0
ϕ(ζ)w(ζ, 0)dζ = −

∫ tf

0

∫ ℓ

0
ϕ̇(ζ)w(ζ, t)dζ.

You see there are no derivatives of w taken anymore.
Now we call w(ζ, t) a weak or mild solution of the PDE if the
above equation is satisfied for all smooth test functions ϕ
satisfying ϕ(0) = 0.
The set of initial conditions must be chosen. With this you also
choose the set in which w(·, tf ) will be. We denote this (linear)
space by X.
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Weak and classical solutions of PDE’s

Question For a given w0 ∈ X = L2(0, ℓ) show that

w(ζ, t) =

{
w0(ζ + t) ζ + t ∈ [0, ℓ]

0 elsewhere

is the weak solution of

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), w(ℓ, t) = 0, w(ζ, 0) = w0(ζ).



Weak and classical solutions of PDE’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.

We will now study when our PDE has a weak solution.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We concentrate on solutions satisfying the additional property that

∥x(t)∥ ≤ ∥x0∥ ∀t > 0 (contraction),

where ∥ · ∥ denotes the norm of the state space X.
Since our PDE’s are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
all t ≥ 0

∥x1(t)−x2(t)∥ ≤ ∥x10−x20∥ (continuity w.r.t. initial condition).



Weak and classical solutions of PDE’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.
We will now study when our PDE has a weak solution.

Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We concentrate on solutions satisfying the additional property that

∥x(t)∥ ≤ ∥x0∥ ∀t > 0 (contraction),

where ∥ · ∥ denotes the norm of the state space X.
Since our PDE’s are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
all t ≥ 0

∥x1(t)−x2(t)∥ ≤ ∥x10−x20∥ (continuity w.r.t. initial condition).



Weak and classical solutions of PDE’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.
We will now study when our PDE has a weak solution.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.

We concentrate on solutions satisfying the additional property that

∥x(t)∥ ≤ ∥x0∥ ∀t > 0 (contraction),

where ∥ · ∥ denotes the norm of the state space X.
Since our PDE’s are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
all t ≥ 0

∥x1(t)−x2(t)∥ ≤ ∥x10−x20∥ (continuity w.r.t. initial condition).



Weak and classical solutions of PDE’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.
We will now study when our PDE has a weak solution.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We concentrate on solutions satisfying the additional property that

∥x(t)∥ ≤ ∥x0∥ ∀t > 0 (contraction),

where ∥ · ∥ denotes the norm of the state space X.

Since our PDE’s are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
all t ≥ 0

∥x1(t)−x2(t)∥ ≤ ∥x10−x20∥ (continuity w.r.t. initial condition).



Weak and classical solutions of PDE’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.
We will now study when our PDE has a weak solution.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We concentrate on solutions satisfying the additional property that

∥x(t)∥ ≤ ∥x0∥ ∀t > 0 (contraction),

where ∥ · ∥ denotes the norm of the state space X.
Since our PDE’s are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
all t ≥ 0

∥x1(t)−x2(t)∥ ≤ ∥x10−x20∥ (continuity w.r.t. initial condition).



Intermezzo



Intermezzo: Strongly continuous semigroups

Consider a linear, time invariant differential equation on the space
X. Assume that for every x0 ∈ X there exists a (weak) solution
denoted by x(t). Furthermore, assume that this solution depends
continuously on the initial condition.

Define for t ≥ 0 the map T (t) : X 7→ X as

T (t)x0 = x(t).

Then it has the following properties:
▶ T (0) = I;
▶ T (t1 + t2) = T (t1)T (t2), t1, t2,∈ [0,∞), time-invariance;
▶ T (t) is for every t ≥ 0 a linear and bounded operator, i.e.,

T (t) ∈ L(X).

If additionally the following holds

lim
t↓0

∥T (t)x0 − x0∥ = 0, continuity at t = 0,

then (T (t))t≥0 is a strongly continuous semigroup, or short
C0-semigroup.
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Intermezzo: Strongly continuous semigroups, examples

It is not hard to show that on X = Rn the exponential eAt is a
C0-semigroup.

Question Show that the solution map of the PDE

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), w(ℓ, t) = 0, w(ζ, 0) = w0(ζ).

is a C0-semigroup.
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Intermezzo: Strongly continuous semigroups

Since T (t) came from x(t) via x(t) = T (t)x0, we have

ẋ(t) = lim
h↓0

x(t+ h)− x(t)

h
= lim

h↓0
T (t+ h)x0 − T (t)x0

h
.

Thus by the semigroup and boundedness property,

ẋ(t) = lim
h↓0

T (t)T (h)x0 − T (t)x0
h

= T (t) lim
h↓0

T (h)x0 − x0
h

.

We define (whenever it exists)

Ax0 := lim
h↓0

T (h)x0 − x0
h

.

With this we obtain the (abstract) differential equation

ẋ(t) = T (t)Ax0 = AT (t)x0 = Ax(t).
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ẋ(t) = lim
h↓0

x(t+ h)− x(t)

h
= lim

h↓0
T (t+ h)x0 − T (t)x0

h
.

Thus by the semigroup and boundedness property,
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Intermezzo: Abstract differential equation

For the linear operator A we denote its domain by dom(A).

Given now a linear operator A : dom(A) ⊆ X 7→ X, under which
conditions does the abstract differential equation

ẋ(t) = Ax(t), x(0) = x0

have solution, i.e., when do we have the existence of a
C0-semigroup?
For X being a Hilbert space (from now on standard assumption)
we have the following:
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Intermezzo: Abstract differential equation

Theorem
If A is skew-adjoint, i.e., A∗ = −A, then A generates a
C0-semigroup satisfying

▶ ∥T (t)∥ = 1 for all t ≥ 0;

▶ T (t) can be extended to the whole real time, and
T (t1 + t2) = T (t1)T (t2), t1, t2 ∈ R and ∥T (t)∥ = 1 for all
t ∈ R, unitary group.

Theorem
If A is dissipative, i.e., ⟨Ax, x⟩ ≤ 0 ∀x ∈ dom(A), and if A∗ is
dissipative, then A generates a C0-semigroup satisfying ∥T (t)∥ ≤ 1
for all t ≥ 0; contraction semigroup.

For x0 ∈ dom(A) the function x(t) = T (t)x0 a classical solution.
For x0 ∈ X it is a weak solution.
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Intermezzo: Useful lemma

Let X be a Hilbert space with inner product ⟨·, ·⟩ and let
Q ∈ L(X) satisfying Q = Q∗, and ⟨x,Qx⟩ ≥ m∥x∥2, ∀x ∈ X.

Question: Prove that if J is skew-adjoint in X, then JQ is
skew-adjoint in the inner product ⟨x, z⟩Q := ⟨x,Qz⟩.



End of intermezzo



Introduction

We have now the right basis in operator theory/functional analysis
and PDE theory to study the existence of solutions for a PDE with
an underlying Dirac structure. We had:

Theorem
Let F = E = X, with X a Hilbert space, and let ⟨f | e⟩ = ⟨f, e⟩X .
Then

D = {( fe ) ∈ F × E | f = Je, e ∈ dom(J)}
is a Dirac structure if and only if J is skew-adjoint.

Furthermore: a skew-adjoint J generates a C0-semigroup (unitary
group) on the Hilbert space X.
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Dirac and ADE

Let J be skew-adjoint on the Hilbert space X with inner product
⟨·, ·⟩ and consider the abstract differential equation, given as

D
f = Je e

f
H

ẋ(t)

Hx(t)

Question: Does the corresponding abstract differential equation

ẋ(t) = JHx(t), x(0) = x0

possess a (unique) solution for all x0 ∈ X?

Yes, but we need that mI ≤ H ≤ MI for some m,M > 0.
If 1

2⟨x,Hx⟩ has the meaning “energy”, then the solution exists for
every initial condition with finite energy, and the energy stays
constant along the solution.
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Dirac and PDE

For our class of PDE’s on the spatial interval [0, ℓ]

∂x

∂t
(ζ, t) = P1

∂

∂ζ
[H(ζ)x(ζ, t)] + P0H(ζ)x(ζ, t),

we have the associated Dirac structure

D =




f = P1

de

dζ
+ P0e,

(
f∂
e∂

)
=

1√
2

(
P1 −P1
I I

)

︸ ︷︷ ︸
R0

(
e(b)
e(a)

)




.

We take F = E = L2(0, ℓ), ⟨f |e⟩ = ⟨f, e⟩, and in D we restrict e
to H1(0, ℓ).
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Dirac and PDE

The PDE associated to the connection

D
f = P1

de
dζ

+ P0e

(
f∂
e∂

)
= R0

(
e(ℓ)
e(0)

)
e

f

f∂

e∂
H

ẋ(t)

Hx(t)

Dbc

is given as

∂x

∂t
(ζ, t) = P1

∂

∂ζ
[H(ζ)x(ζ, t)] + P0H(ζ)x(ζ, t),

with boundary condition

(
f∂
e∂

)
∈ ran

(
F
E

)
.



Dirac and PDE

Theorem (Le Gorrec, Maschke & Z. ’05)

Assume that P0 = −P⊤
0 , P1 = P⊤

1 , P1 invertible and
0 < mI ≤ H(ζ) ≤ MI, for all ζ ∈ [0, ℓ]. Then the PDE associated
to the connection

D
f = P1

de
dζ

+ P0e

(
f∂
e∂

)
= R0

(
e(ℓ)
e(0)

)
e

f

f∂

e∂
H

ẋ(t)

Hx(t)

Dbc

has for every x0 ∈ X a unique weak solution satisfying
∥x(t)∥H = ∥x0∥H, t ∈ R,
Or equivalently, the associated A generates a unitary group on
L2([0, ℓ];Rn) with energy norm ∥x∥2H = ⟨x,Hx⟩.



Dirac and PDE

Question: How many boundary conditions does the previous PDE
have?

Question: Define the Hamiltonian H(t) := 1
2⟨x(t),Hx(t)⟩. What

do you know about Ḣ(t)?

Note that the boundary conditions can be written in the more
familiar form (

f∂
e∂

)
∈ ker

(
ET F T

)
,

or
(
I +Θ I −Θ

)(f∂
e∂

)
= 0,

with Θ unitary.
With this, the previous theorem can be reformulated.
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Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. ’05, Jacob & Z ’11)

Given our port-Hamiltonian partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

with the properties on P0, P1 and H, and boundary conditions
WB

(
f∂
e∂

)
= 0, WB a n× 2n-matrix. Then the following are

equivalent:

▶ The PDE has for every x0 ∈ X a unique weak solution
satisfying ∥x(t)∥H = ∥x0∥H, t ∈ R;

▶ WB can be written as S
(
I +Θ I −Θ

)
with S invertible

and Θ unitary;

▶ WB has full rank, and Ḣ(0) = 0 for all (smooth) initial
conditions satisfying the boundary conditions.



Example

As our (running) example we consider the vibrating string

ζ →

w(ζ, t) ↑
∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
.

With ρ the mass density, and T Young’s modulus.

We choose x1 := ρ
∂w

∂t
(the momentum), x2 :=

∂w

∂ζ
(the strain),

and write the PDE as

∂

∂t

(
x1
x2

)
(ζ, t) =

(
0 1
1 0

)

︸ ︷︷ ︸
=P1

∂

∂ζ

︸ ︷︷ ︸
J




( 1
ρ(ζ) 0

0 T (ζ)

)

︸ ︷︷ ︸
=H

x(ζ, t)


 .
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Boundary conditions and power balance

Our vibrating string

ζ →

w(ζ, t) ↑
∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
.

is fixed at ζ = 0 and moves freely at ζ = ℓ.

In the state variables
x1 = ρ∂w

∂t and x2 =
∂w
∂ζ this gives the (boundary) conditions

x1(0, t) = 0 and x2(ℓ, t) = 0.

The power balance becomes

Ḣ(t) =
1

2

[
(Hx)T (ζ, t)P1 (Hx) (ζ, t)

]ℓ
0

=
1

2

[( 1
ρ(ζ)x1(ζ, t)

T (ζ)x2(ζ, t)

)T (
0 1
1 0

)( 1
ρ(ζ)x1(ζ, t)

T (ζ)x2(ζ, t)

)]ℓ

0

= 0.
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Example: the wave equation

Now we check the conditions.

▶ P1 =

(
0 1
1 0

)
is an invertible 2× 2 matrix (n = 2).

▶ P0 = 0, so skew-symmetric.

▶ If 0 < m ≤ T (ζ), ρ(ζ)−1 ≤ M for all ζ, then

H(ζ) =

(
ρ(ζ)−1 0

0 T (ζ)

)
satisfies mI2 ≤ H(ζ) ≤ MI2.

▶ WB =

(
1 0 0 0
0 0 1 0

)
R−1

0 = 1√
2

(
0 1 1 0
0 −1 1 0

)
has rank 2.

▶ Ḣ(0) = 0.

Thus our pH system has for every x0 ∈ X a unique weak solution
for t ∈ R with constant energy.
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Thus our pH system has for every x0 ∈ X a unique weak solution
for t ∈ R with constant energy.



Example: the wave equation
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▶ Ḣ(0) = 0.

Thus our pH system has for every x0 ∈ X a unique weak solution
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Dirac and PDE

Assume that we add a damping to the left hand side of Dbc.

D
f = P1

de
dζ

+ P0e

(
f∂
e∂

)
= R0

(
e(ℓ)
e(0)

)
e

f

f∂

e∂
H

ẋ(t)

Hx(t)

DbcR
φ

Rφ

Question: What would now hold for Ḣ(t)?
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Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. ’05, Jacob & Z ’11)

Given our port-Hamiltonian partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

with the properties on P0, P1 and H, and boundary conditions
WB

(
f∂
e∂

)
= 0, WB a n× 2n-matrix. Then the following are

equivalent:

▶ The PDE has for every x0 ∈ X a unique weak solution
satisfying ∥x(t)∥H ≤ ∥x0∥H, t ≥ 0, i.e, a contraction
semigroup;

▶ WB can be written as S
(
I + V I − V

)
with S invertible

and V satisfies V V ⊤ ≤ I;

▶ WB has full rank, and Ḣ(0) ≤ 0 for all (smooth) initial
conditions satisfying the boundary conditions.



Input and outputs

We don’t only want to study homogeneous PDE’s, but also want
to allow for control/inputs and observations/outputs. Assume that
we add an input and output to the left hand side of Dbc.

D
f = P1

de
dζ

+ P0e

(
f∂
e∂

)
= R0

(
e(ℓ)
e(0)

)
e

f

f∂

e∂
H

ẋ(t)

Hx(t)u

y

This is a port-Hamiltonian system with damping, and
inputs/outputs.



Input and outputs

The partial differential equation associated to

D
f = P1

de
dζ

+ P0e

(
f∂
e∂

)
= R0

(
e(ℓ)
e(0)

)
e

f

f∂

e∂
H

ẋ(t)

Hx(t)u

y

is

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)] ;

0 = WB,1

(
f∂(t)
e∂(t)

)
;

u(t) = WB,2

(
f∂(t)
e∂(t)

)
;

y(t) = WC

(
f∂(t)
e∂(t)

)
.



Solution to inhomogeneous pH-PDE

Theorem (Z, Le Gorrec, Maschke & Villegas ’10, Jacob & Z
’11)

Given our port-Hamiltonian partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

with the properties on P0, P1 and H, and boundary conditions,
input and outputs

(
WB,1

WB,2

WC

)(
f∂(t)
e∂(t)

)
=

(
0

u(t)
y(t)

)

with WB :=
(

WB,1

WB,2

)
a full rank n× 2n-matrix. If there exists a

unique weak solution when u ≡ 0, then for every initial condition
in X and every u ∈ L2((0, t1);Rm) there is a unique solution with
y ∈ L2((0, t1);Rk), t1 > 0 arbitrary.



Solution to inhomogeneous pH-PDE

Comments

▶ Note that we have simple condition for existence of the
homogeneous PDE.

▶ It is standard “PDE-theory” to show that for sufficiently
smooth inputs you have existence, see [Le Gorrec, Maschke &
Z ’05].

▶ The proof of this theorem is based on a result by G. Weiss
from 1994.



Example: the wave equation

u

y
ζ →

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]

∂w

∂t
(0, t) = 0, T (ℓ)

∂w

∂ζ
(ℓ, t) = u(t)

∂w

∂t
(ℓ, t) = y(t).

So we control the force and measure the velocity at the right end.
Since have shown that for u ≡ 0 we have a solution (even a unitary
group), we have a unique (weak) solution for all initial conditions
in X and every u ∈ L2(0, t1).
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Transfer function, general

Let Σ be a system with input u(t), output y(t) and remaining
variables z(t).

Let s ∈ C and u0 ∈ U (input (value) space) be given. If there
exists a solution (u(t), z(t), y(t) of the form
(u(t), z(t), y(t)) = (u0e

st, z0e
st, y0e

st), then this is called an
exponential solution.
Let s ∈ C be given. If for every u0 ∈ U , there exists a (unique)
exponential solution, then the map G(s) : U 7→ Y , G(s)u0 = y0 is
called the transfer function at s of the system Σ.
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Transfer function, pH-PDE

For our pH-PDE

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)] ;

0 = WB,1

(
f∂(t)
e∂(t)

)
; u(t) = WB,2

(
f∂(t)
e∂(t)

)
;

y(t) = WC

(
f∂(t)
e∂(t)

)
.

the transfer function is found by solving for given u0 ∈ Rm, s ∈ C

∂x0(ζ)e
st

∂t
=

(
P1

∂

∂ζ
+ P0

)[
H(ζ)x0(ζ)e

st
]
;

0 = WB,1

(
f∂,0e

st

e∂,0e
st

)
; u0e

st = WB,2

(
f∂,0e

st

e∂,0e
st

)
;

y0e
st = WC

(
f∂,0e

st

e∂,0e
st

)
.



Transfer function, pH-PDE

This is the same as solving

sx0(ζ) =

(
P1

d

dζ
+ P0

)
[H(ζ)x0(ζ)] ;

0 = WB,1

(
f∂,0
e∂,0

)
; u0 = WB,2

(
f∂,0
e∂,0

)
;

y0 = WC

(
f∂,0
e∂,0

)
.

This is almost always impossible. However, the balance equation
can give properties of the transfer function G(s).
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Since H(t) = ⟨x(t),Hx(t)⟩, we find
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Example: the transfer function of the wave equation

For every solution of this controlled and observed vibrating string

Ḣ(t) =
d

dt
⟨x(t),Hx(t)⟩ = u(t)y(t).

Substituting the exponential solution, we have

Ḣ(t) =
d

dt
⟨x0est,Hx0e

st⟩ = u0e
sty0e

st.

2s⟨x0est,Hx0e
st⟩ = u0e

sty0e
st ⇔

2s⟨x0,Hx0⟩ = u0y0 = u0G(s)u0 = G(s)u20.

Since ⟨x0,Hx0⟩ ≥ 0, we find G(s) > 0 for s > 0.
G is “positive real”.
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C’est tout


