Port Hamiltonian systems from analysis to numerics

Hans Zwart

University of Twente and Eindhoven University of Technology, The Netherlands

October 8, 2025

Introduction to lecturer and material

► The lecturer

Introduction to lecturer and material

The lecturer

What will we cover?

- 1. Dirac structures on finite-dimensional spaces.
 - 1.1 General definition and properties
 - 1.2 Defining continuous- and discrete-time systems via a Dirac structure; ODE's, DAE's
- 2. Dirac structures on infinite-dimensional spaces.
 - 2.1 Gently introduction
 - 2.2 Class of Dirac structures
 - 2.3 Link to operators and PDE's.
- 3. Restricting a Dirac structure on infinite-dimensional spaces to finite-dimensional space (numerics).
- 4. Existence of solution of pH-PDE's.
 - 4.1 Homogeneous
 - 4.2 Inhomogeneous
 - 4.3 Transfer functions

Port Hamiltonian systems from analysis to numerics

Dirac structures

Hans Zwart

University of Twente and Eindhoven University of Technology, The Netherlands

October 8, 2025

Let ${\mathcal E}$ and ${\mathcal F}$ be real (complex) two linear spaces with a bilinear product

$$\langle f \mid e \rangle \in \mathbb{R} \text{ (or } \mathbb{C}).$$

We assume that this product is non-degenerated, that is

$$\langle f \mid e \rangle = 0 \quad \forall e \in \mathcal{E} \Rightarrow f = 0,$$

 $\langle f \mid e \rangle = 0 \quad \forall f \in \mathcal{F} \Rightarrow e = 0.$

Let ${\mathcal E}$ and ${\mathcal F}$ be real (complex) two linear spaces with a bilinear product

$$\langle f \mid e \rangle \in \mathbb{R} \text{ (or } \mathbb{C}).$$

We assume that this product is non-degenerated, that is

$$\langle f \mid e \rangle = 0 \quad \forall e \in \mathcal{E} \Rightarrow f = 0,$$

 $\langle f \mid e \rangle = 0 \quad \forall f \in \mathcal{F} \Rightarrow e = 0.$

 ${\mathcal E}$ is called the effort space and ${\mathcal F}$ is the flow space. The bond space ${\mathcal B}$ is defined as ${\mathcal F} \times {\mathcal E}$.

On the bond space $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ we define the symmetrised pairing

$$\left\langle \begin{pmatrix} f_1 \\ e_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \right\rangle_{\mathcal{B}} = \left\langle f_2 \mid e_1 \right\rangle + \left\langle f_1 \mid e_2 \right\rangle.$$

On the bond space $\mathcal{B}=\mathcal{F}\times\mathcal{E}$ we define the symmetrised pairing

$$\left\langle \begin{pmatrix} f_1 \\ e_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \right\rangle_{\mathcal{B}} = \left\langle f_2 \mid e_1 \right\rangle + \left\langle f_1 \mid e_2 \right\rangle.$$

For $V \subseteq \mathcal{B}$ we define

$$V^{\perp} = \left\{ \begin{pmatrix} f_1 \\ e_1 \end{pmatrix} \in \mathcal{B} \mid \left\langle \begin{pmatrix} f_1 \\ e_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \right\rangle_{\mathcal{B}} = 0 \text{ for all } \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \in V \right\}.$$

Definition

The linear subspace \mathcal{D} of \mathcal{B} is a Dirac structure if $\mathcal{D}^{\perp} = \mathcal{D}$.

Dirac structures, general properties

If \mathcal{D} is a Dirac structure, then

$$\langle f \mid e \rangle = 0 \text{ for all } \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D}.$$

This has (may have) the interpretation of power conservation, see later.

For finite-dimensional spaces, the following gives a very useful characterisation of a Dirac structure.

Lemma

For
$$\mathcal{F} = \mathcal{E} = \mathbb{R}^n$$
 with $\langle f \mid e \rangle = f^{\top} e$

we have that $\mathcal D$ is a Dirac structure if and only if there exists two $n \times n$ matrices F and E, such that

- 1. $\mathcal{D} = \operatorname{ran}\left(\frac{F}{E}\right)$;
- 2. The matrix $\binom{F}{E}$ has full rank (rank equals n);
- 3. $F^{\top}E + E^{\top}F = 0$, or in other words $F^{\top}E$ is skew-adjoint (anti-symmetric).

For finite-dimensional spaces, the following gives a very useful characterisation of a Dirac structure.

Lemma

For
$$\mathcal{F} = \mathcal{E} = \mathbb{R}^n$$
 with $\langle f \mid e \rangle = f^{ op} e$

we have that $\mathcal D$ is a Dirac structure if and only if there exists two $n \times n$ matrices F and E, such that

- 1. $\mathcal{D} = \operatorname{ran}\left(\frac{F}{E}\right)$;
- 2. The matrix $\binom{F}{E}$ has full rank (rank equals n);
- 3. $F^{\top}E + E^{\top}F = 0$, or in other words $F^{\top}E$ is skew-adjoint (anti-symmetric).

Question Formulate a similar result if $\langle f \mid e \rangle = f^{\top}Qe$. Conditions on Q?

Proof of Lemma

Assume that $\mathcal{D} \subset \mathbb{R}^n \times \mathbb{R}^n$ is a Dirac structure. Then

It is a linear subspace, so there exist matrices F and E of size $(n \times m)$ such that $\mathcal{D} = \operatorname{ran} \left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ and $\left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ is of full rank (rank equals m).

Proof of Lemma

Assume that $\mathcal{D} \subset \mathbb{R}^n \times \mathbb{R}^n$ is a Dirac structure. Then

- ▶ It is a linear subspace, so there exist matrices F and E of size $(n \times m)$ such that $\mathcal{D} = \operatorname{ran} \left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ and $\left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ is of full rank (rank equals m).
- ▶ The relation $\binom{f_2}{e_2} \perp \operatorname{ran} \binom{F}{E}$ is a linear equation with 2n unknown and m conditions. Hence the dimension of the solution set is 2n-m-dimensional. However, since the solution set equals $\mathcal D$ we have 2n-m=m. Thus m=n.

Proof of Lemma

Assume that $\mathcal{D} \subset \mathbb{R}^n \times \mathbb{R}^n$ is a Dirac structure. Then

- ▶ It is a linear subspace, so there exist matrices F and E of size $(n \times m)$ such that $\mathcal{D} = \operatorname{ran} \left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ and $\left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ is of full rank (rank equals m).
- ▶ The relation $\binom{f_2}{e_2} \perp \operatorname{ran} \binom{F}{E}$ is a linear equation with 2n unknown and m conditions. Hence the dimension of the solution set is 2n-m-dimensional. However, since the solution set equals $\mathcal D$ we have 2n-m=m. Thus m=n.
- ▶ The equality $\langle f \mid e \rangle = 0$ is equivalent to $\ell^\top F^\top E \ell = 0$ for all $\ell \in \mathbb{R}^n$. Thus $\ell^\top \left[F^\top E + E^\top F \right] \ell = 0$. Since $F^\top E + E^\top F$ is symmetric, we conclude that $F^\top E + E^\top F = 0$.

Proof of Lemma, continued.

Let $\mathcal{D} = \operatorname{ran} \begin{pmatrix} F \\ E \end{pmatrix}$ with $\begin{pmatrix} F \\ E \end{pmatrix}$ a $2n \times n$ matrix of rank n, and with $F^{\top}E + E^{\top}F = 0$. We have to show that \mathcal{D} is a Dirac structure.

 $lackbox{For } \left(egin{array}{c} f_2 \\ e_2 \end{array}
ight) \in \mathcal{D} \ \ {
m we have for any } \left(egin{array}{c} f_1 \\ e_1 \end{array}
ight) \in \mathcal{D} \ \ {
m that}$

$$\left\langle \begin{pmatrix} f_1 \\ e_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \right\rangle_{\mathcal{B}} = \left\langle f_2 \mid e_1 \right\rangle + \left\langle f_1 \mid e_2 \right\rangle$$
$$= \ell_2^{\mathsf{T}} F^{\mathsf{T}} E \ell_1 + \ell_1^{\mathsf{T}} F^{\mathsf{T}} E \ell_2$$
$$= \ell_2^{\mathsf{T}} F^{\mathsf{T}} E \ell_1 + \ell_2^{\mathsf{T}} E^{\mathsf{T}} F \ell_1 = 0.$$

Thus $\begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \in \mathcal{D}^{\perp}$, and so $\mathcal{D} \subseteq \mathcal{D}^{\perp}$.

Proof of Lemma, continued.

Let $\mathcal{D} = \operatorname{ran} \begin{pmatrix} F \\ E \end{pmatrix}$ with $\begin{pmatrix} F \\ E \end{pmatrix}$ a $2n \times n$ matrix of rank n, and with $F^{\top}E + E^{\top}F = 0$. We have to show that \mathcal{D} is a Dirac structure.

 $lackbox{For } \left(egin{array}{c} f_2 \\ e_2 \end{array}
ight) \in \mathcal{D} \ \ {
m we have for any } \left(egin{array}{c} f_1 \\ e_1 \end{array}
ight) \in \mathcal{D} \ \ {
m that}$

$$\left\langle \begin{pmatrix} f_1 \\ e_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \right\rangle_{\mathcal{B}} = \left\langle f_2 \mid e_1 \right\rangle + \left\langle f_1 \mid e_2 \right\rangle$$
$$= \ell_2^{\mathsf{T}} F^{\mathsf{T}} E \ell_1 + \ell_1^{\mathsf{T}} F^{\mathsf{T}} E \ell_2$$
$$= \ell_2^{\mathsf{T}} F^{\mathsf{T}} E \ell_1 + \ell_2^{\mathsf{T}} E^{\mathsf{T}} F \ell_1 = 0.$$

Thus $\begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \in \mathcal{D}^{\perp}$, and so $\mathcal{D} \subseteq \mathcal{D}^{\perp}$.

▶ By construction $\dim(\mathcal{D}^{\perp}) = 2n - n$ (dimension space minus number of conditions) $= n = \dim(\mathcal{D})$. Combined with $\mathcal{D} \subseteq \mathcal{D}^{\perp}$, we find that $\mathcal{D} = \mathcal{D}^{\perp}$.

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e.$

We have seen that every Dirac structure can be written as $\mathcal{D} = \mathrm{ran}\left(\frac{F}{E}\right)$ with $\left(\frac{F}{E}\right)$ a $2n \times n$ matrix of rank n, and with $F^{\top}E + E^{\top}F = 0$. This is known as the image representation.

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e.$

We have seen that every Dirac structure can be written as $\mathcal{D} = \mathrm{ran}\left(\frac{F}{E}\right)$ with $\left(\frac{F}{E}\right)$ a $2n \times n$ matrix of rank n, and with $F^{\top}E + E^{\top}F = 0$. This is known as the image representation.

Lemma

Let the Dirac structure on $\mathbb{R}^n \times \mathbb{R}^n$ be given as $\mathcal{D} = \operatorname{ran}\left(\frac{F}{E}\right)$ with the above condition on E, F. Then \mathcal{D} has the kernel representation

$$\mathcal{D} = \ker \begin{pmatrix} E^{\top} & F^{\top} \end{pmatrix}.$$

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e.$

We have seen that every Dirac structure can be written as $\mathcal{D} = \mathrm{ran}\left(\frac{F}{E}\right)$ with $\left(\frac{F}{E}\right)$ a $2n \times n$ matrix of rank n, and with $F^{\top}E + E^{\top}F = 0$. This is known as the image representation.

Lemma

Let the Dirac structure on $\mathbb{R}^n \times \mathbb{R}^n$ be given as $\mathcal{D} = \operatorname{ran}\left(\frac{F}{E}\right)$ with the above condition on E, F. Then \mathcal{D} has the kernel representation

$$\mathcal{D} = \ker \begin{pmatrix} E^{\top} & F^{\top} \end{pmatrix}.$$

Question Under which condition(s) is $\mathcal{D} = \ker \begin{pmatrix} E_1 & F_1 \end{pmatrix}$ a Dirac structure? Furthermore, what is its image representation?

Proof of the Lemma

For $(f \atop e) \in \mathcal{D}$ we have

$$(E^{\top} \quad F^{\top}) \begin{pmatrix} f \\ e \end{pmatrix} = (E^{\top} \quad F^{\top}) \begin{pmatrix} F \\ E \end{pmatrix} \ell = 0.$$

Proof of the Lemma

For $(f \atop e) \in \mathcal{D}$ we have

$$(E^{\top} \quad F^{\top}) \begin{pmatrix} f \\ e \end{pmatrix} = (E^{\top} \quad F^{\top}) \begin{pmatrix} F \\ E \end{pmatrix} \ell = 0.$$

Hence $\mathcal{D} \subseteq \ker \begin{pmatrix} E^{\top} & F^{\top} \end{pmatrix}$.

By checking dimensions, we find that these sets are equal.

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e.$ We have the following alternative characterisation of a Dirac structure.

Lemma

 $\mathcal{D} = \operatorname{ran}\left(rac{F}{E}
ight)$ is a Dirac structure if and only if there exists a unitary matrix Θ such that $\mathcal{D} = \operatorname{ran}\left(rac{-I+\Theta}{I+\Theta}
ight)$.

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e$. We have the following alternative characterisation of a Dirac structure.

Lemma

 $\mathcal{D} = \operatorname{ran}\left(rac{F}{E}
ight)$ is a Dirac structure if and only if there exists a unitary matrix Θ such that $\mathcal{D} = \operatorname{ran}\left(rac{-I+\Theta}{I+\Theta}
ight)$.

Proof: Using that $F^TE + E^TF = 0$, we find that

$$(E+F)^{T}(E+F) = (E-F)^{T}(E-F).$$
 (*)

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e$. We have the following alternative characterisation of a Dirac structure.

Lemma

 $\mathcal{D} = \operatorname{ran}\left(rac{F}{E}
ight)$ is a Dirac structure if and only if there exists a unitary matrix Θ such that $\mathcal{D} = \operatorname{ran}\left(rac{-I+\Theta}{I+\Theta}
ight)$.

Proof: Using that $F^TE + E^TF = 0$, we find that

$$(E+F)^T(E+F) = (E-F)^T(E-F).$$
 (*)

So if (E-F)v=0, then (E+F)v=0, and thus Ev=Fv=0. Since $\binom{F}{E}$ has full rank, we find v=0. Thus E-F is invertible.

We assume the finite-dimensional case, i.e., $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^\top e$. We have the following alternative characterisation of a Dirac structure.

Lemma

 $\mathcal{D} = \operatorname{ran}\left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ is a Dirac structure if and only if there exists a unitary matrix Θ such that $\mathcal{D} = \operatorname{ran}\left(\begin{smallmatrix} -I + \Theta \\ I + \Theta \end{smallmatrix} \right)$.

Proof: Using that $F^TE + E^TF = 0$, we find that

$$(E+F)^T(E+F) = (E-F)^T(E-F).$$
 (*)

So if (E-F)v=0, then (E+F)v=0, and thus Ev=Fv=0. Since $\binom{F}{E}$ has full rank, we find v=0. Thus E-F is invertible. Define $\Theta=(E+F)(E-F)^{-1}$, then (*) implies that Θ is unitary.

We assume the finite-dimensional case, i.e., $\mathcal{F}=\mathcal{E}=\mathbb{R}^n$ with $\langle f\mid e\rangle=f^{\top}e$. We have the following alternative characterisation of a Dirac structure.

Lemma

 $\mathcal{D} = \operatorname{ran}\left(\begin{smallmatrix} F \\ E \end{smallmatrix} \right)$ is a Dirac structure if and only if there exists a unitary matrix Θ such that $\mathcal{D} = \operatorname{ran}\left(\begin{smallmatrix} -I + \Theta \\ I + \Theta \end{smallmatrix} \right)$.

Proof: Using that $F^TE + E^TF = 0$, we find that

$$(E+F)^T(E+F) = (E-F)^T(E-F).$$
 (*)

So if (E-F)v=0, then (E+F)v=0, and thus Ev=Fv=0. Since $\binom{F}{E}$ has full rank, we find v=0. Thus E-F is invertible. Define $\Theta=(E+F)(E-F)^{-1}$, then (*) implies that Θ is unitary. Now $\mathcal{D}=\operatorname{ran}\binom{F}{E}=\operatorname{ran}\binom{2F(E-F)^{-1}}{2E(E-F)^{-1}}=\operatorname{ran}\binom{-I+\Theta}{I+\Theta}$. \square

We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^\top e$.

We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^{\top}e$.

Example

If we take F=J, E=I, with $J^{\top}=-J$, then by the above

$$\mathcal{D} = \ker \begin{pmatrix} I^{\top} & J^{\top} \end{pmatrix} = \ker \begin{pmatrix} I & -J \end{pmatrix}$$

defines a Dirac structure.

We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^{\top}e$.

Example

If we take F=J, E=I, with $J^{\top}=-J$, then by the above

$$\mathcal{D} = \ker \begin{pmatrix} I^\top & J^\top \end{pmatrix} = \ker \begin{pmatrix} I & -J \end{pmatrix}$$

defines a Dirac structure.

So the solutions of $\dot{x}(t) = J\mathcal{H}x(t)$ ($\mathcal{H} = \mathcal{H}^{\top}$) can be seen as $\begin{pmatrix} f \\ e \end{pmatrix} = \begin{pmatrix} \dot{x}(t) \\ \mathcal{H}x(t) \end{pmatrix} \in \mathcal{D}$ and satisfy

$$\frac{d}{dt} \left[\frac{1}{2} x(t)^{\top} \mathcal{H} x(t) \right] = \dot{x}(t)^{\top} \mathcal{H} x(t) = f^{\top} e = 0.$$

Thus $H(t) := \frac{1}{2}x(t)^{\top}\mathcal{H}x(t)$ is constant along solutions of the differential equation.

L

Note that we did not need conditions on \mathcal{H} , except from symmetry.

Note that we did not need conditions on \mathcal{H} , except from symmetry. Choosing $\mathcal{H}=\mathrm{diag}(1,-1)$ gives an unstable system, Check.

Note that we did not need conditions on \mathcal{H} , except from symmetry. Choosing $\mathcal{H}=\mathrm{diag}(1,-1)$ gives an unstable system, Check. The previous example can be extended to non-linear o.d.e.'s.

Example

Let
$$\mathcal{D}=\mathrm{ran}\left(\begin{smallmatrix}F\\E\end{smallmatrix}\right)$$
 with $\left(\begin{smallmatrix}F\\E\end{smallmatrix}\right)$ a $2n\times n$ matrix of rank n , and with $F^{\top}E=-E^{\top}F$.

Note that we did not need conditions on \mathcal{H} , except from symmetry. Choosing $\mathcal{H}=\mathrm{diag}(1,-1)$ gives an unstable system, Check. The previous example can be extended to non-linear o.d.e.'s.

Example

Let $\mathcal{D}=\mathrm{ran}\left(rac{F}{E}\right)$ with $\left(rac{F}{E}\right)$ a $2n\times n$ matrix of rank n, and with $F^{\top}E=-E^{\top}F$.

With the C^1 -function $H:\mathbb{R}^n\mapsto\mathbb{R}$, we define the implicit differential equation

$$\begin{pmatrix} \dot{x}(t) \\ \frac{\partial H}{\partial x}(x(t)) \end{pmatrix} \in \mathcal{D}.$$

Then along solutions, there holds $\frac{d}{dt}H(x(t)) = 0$.

Note that the implicit differential equation can be made explicitly as

$$E^{\top}\dot{x}(t) = -F^{\top}\frac{\partial H}{\partial x}(x(t)).$$

Note that the implicit differential equation can be made explicitly as

$$E^{\top}\dot{x}(t) = -F^{\top}\frac{\partial H}{\partial x}(x(t)).$$

Since E needs not to be invertible, this <u>includes DAE's</u>.

Note that the implicit differential equation can be made explicitly as

$$E^{\top}\dot{x}(t) = -F^{\top}\frac{\partial H}{\partial x}(x(t)).$$

Since E needs not to be invertible, this <u>includes DAE's</u>.

The above differential equation needs not to have solutions (for all initial conditions). For instance, take E=0 and F=I, then the diff. eqn. becomes $0=-\frac{\partial H}{\partial x}(x(t))$.

Note that the implicit differential equation can be made explicitly as

$$E^{\top}\dot{x}(t) = -F^{\top}\frac{\partial H}{\partial x}(x(t)).$$

Since E needs not to be invertible, this <u>includes DAE's</u>.

The above differential equation needs not to have solutions (for all initial conditions). For instance, take E=0 and F=I, then the diff. eqn. becomes $0=-\frac{\partial H}{\partial x}(x(t))$.

So a Dirac structure alone does **not** guarantee existence nor stability.

Since there is no time in a Dirac structure, we can choose our time axis. We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^\top e$.

Since there is no time in a Dirac structure, we can choose our time axis. We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^\top e$.

Example

For $J \in \mathbb{R}^{n \times n}$ satisfying $J^{\top} = -J$, define the Dirac structure

$$\mathcal{D} = \ker (I^{\top} \quad J^{\top}) = \ker (I \quad -J).$$

Since there is no time in a Dirac structure, we can choose our time axis. We assume $\mathcal{F} = \mathcal{E} = \mathbb{R}^n$ with $\langle f \mid e \rangle = f^\top e$.

Example

For $J \in \mathbb{R}^{n \times n}$ satisfying $J^{\top} = -J$, define the Dirac structure

$$\mathcal{D} = \ker \begin{pmatrix} I^{\top} & J^{\top} \end{pmatrix} = \ker \begin{pmatrix} I & -J \end{pmatrix}.$$

So the solutions of $x(n+1)-x(n)=J\mathcal{H}\left[x(n+1)+x(n)\right]$ $(\mathcal{H}=\mathcal{H}^{\top})$ can be seen as $\binom{f}{e}=\binom{x(n+1)-x(n)}{\mathcal{H}[x(n+1)+x(n)]}\in\mathcal{D}$ and satisfy

$$x(n+1)^{T}\mathcal{H}x(n+1) - x(n)\mathcal{H}x(n) = [x(n+1) - x(n)]^{T}\mathcal{H}[x(n+1) + x(n)] = 0.$$

Thus $H(n) := x(n)^{\top} \mathcal{H} x(n)$ is constant along solutions of the difference equation.

L

Note that if $I-J\mathcal{H}$ is invertible, then the implicit difference equation

$$x(n+1) - x(n) = J\mathcal{H}\left[x(n+1) + x(n)\right]$$

can be made explicite. Namely, to

$$x(n+1) = (I - J\mathcal{H})^{-1}(I + J\mathcal{H})x(n).$$

Question Prove that under the conditions in the example, the matrix $I-J\mathcal{H}$ is invertible.

In the previous examples of dynamical systems we choose f to be the change of the state variable x. However, this is not dictated by the Dirac structure. Other choices are possible.

Example

We split our effort and flow space, and choose ${\cal J}$ as

$$f = \left(\begin{smallmatrix} \phi_1 \\ \phi_2 \end{smallmatrix} \right), e = \left(\begin{smallmatrix} \varepsilon_1 \\ \varepsilon_2 \end{smallmatrix} \right), J = \left(\begin{smallmatrix} J_{11} & J_{12} \\ -J_{12}^\top & 0 \end{smallmatrix} \right).$$

For $\phi_1=\dot{x}(t)$, $\varepsilon_2=R\phi_2$ and $\varepsilon_1=\mathcal{H}x(t)$, f=Je becomes

$$\begin{pmatrix} \dot{x}(t) \\ \phi_2 \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} \\ -J_{12}^\top & 0 \end{pmatrix} \begin{pmatrix} \mathcal{H}x(t) \\ R\phi_2 \end{pmatrix}.$$

Example

We split our effort and flow space, and choose ${\cal J}$ as

$$f = \left(\begin{smallmatrix} \phi_1 \\ \phi_2 \end{smallmatrix} \right), e = \left(\begin{smallmatrix} \varepsilon_1 \\ \varepsilon_2 \end{smallmatrix} \right), J = \left(\begin{smallmatrix} J_{11} & J_{12} \\ -J_{12}^\top & 0 \end{smallmatrix} \right).$$

For $\phi_1=\dot{x}(t)$, $\varepsilon_2=R\phi_2$ and $\varepsilon_1=\mathcal{H}x(t)$, f=Je becomes

$$\begin{pmatrix} \dot{x}(t) \\ \phi_2 \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} \\ -J_{12}^{\top} & 0 \end{pmatrix} \begin{pmatrix} \mathcal{H}x(t) \\ R\phi_2 \end{pmatrix}.$$

Hence x satisfies $\dot{x}(t) = (J_{11} - J_{12}RJ_{12}^{\top})\mathcal{H}x(t)$. So

$$\dot{x}(t)^{\top} \mathcal{H} x(t) + \phi_2^{\top} R \phi_2 = f^{\top} e = 0.$$

When $R \geq 0$ this gives dissipation of $H(t) = \frac{1}{2}x(t)^{\top}\mathcal{H}x(t)$.

Example

We split our effort and flow space, and choose ${\cal J}$ as

$$f = \left(\begin{smallmatrix} \phi_1 \\ \phi_2 \end{smallmatrix} \right), e = \left(\begin{smallmatrix} \varepsilon_1 \\ \varepsilon_2 \end{smallmatrix} \right), J = \left(\begin{smallmatrix} J_{11} & B \\ -B^\top & -J_{22} \end{smallmatrix} \right).$$

For $\phi_1 = \dot{x}(t)$, $\phi_2 = -y(t)$, $\varepsilon_2 = u(t)$ and $\varepsilon_1 = \mathcal{H}x(t)$, f = Je becomes

$$\begin{pmatrix} \dot{x}(t) \\ -y(t) \end{pmatrix} = \begin{pmatrix} J_{11} & B \\ -B^\top & -J_{22} \end{pmatrix} \begin{pmatrix} \mathcal{H}x(t) \\ u(t) \end{pmatrix}.$$

Example

We split our effort and flow space, and choose ${\cal J}$ as

$$f = \left(\begin{smallmatrix} \phi_1 \\ \phi_2 \end{smallmatrix} \right), e = \left(\begin{smallmatrix} \varepsilon_1 \\ \varepsilon_2 \end{smallmatrix} \right), J = \left(\begin{smallmatrix} J_{11} & B \\ -B^\top & -J_{22} \end{smallmatrix} \right).$$

For $\phi_1=\dot{x}(t)$, $\phi_2=-y(t)$, $\varepsilon_2=u(t)$ and $\varepsilon_1=\mathcal{H}x(t)$, f=Je becomes

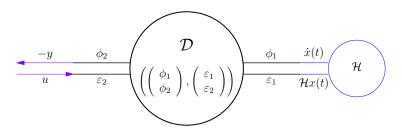
$$\begin{pmatrix} \dot{x}(t) \\ -y(t) \end{pmatrix} = \begin{pmatrix} J_{11} & B \\ -B^{\top} & -J_{22} \end{pmatrix} \begin{pmatrix} \mathcal{H}x(t) \\ u(t) \end{pmatrix}.$$

So the system

$$\dot{x}(t) = J_{11}\mathcal{H}x(t) + Bu(t)$$
$$y(t) = B^{\top}\mathcal{H}x(t) + J_{22}u(t)$$

satisfying
$$\dot{x}(t)^{\top} \mathcal{H} x(t) - y(t)^{\top} u(t) = f^{\top} e = 0.$$

Dirac structures and port-Hamiltonian systems



 $\label{eq:Figure:Dirac} \mbox{Figure: Dirac structure connected to storage, and input, output} \\ \mbox{The system}$

$$\dot{x}(t) = J_{11}\mathcal{H}x(t) + Bu(t)$$
$$y(t) = B^{\top}\mathcal{H}x(t) + J_{22}u(t)$$

is a (standard) example of a port-Hamiltonian system, with $H(t) = \frac{1}{2}x(t)^{\top}\mathcal{H}x(t)$ the Hamiltonian and (u,y) the ports.

Intermezzo

On our bond space $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ we have the bilinear relation $\langle f \mid e \rangle$.

On our bond space $\mathcal{B}=\mathcal{F}\times\mathcal{E}$ we have the bilinear relation $\langle f\mid e\rangle$. If we define (for fixed f) the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R} \text{ as } \ell_f(e) = \langle f \mid e \rangle,$$

then this is a linear map from $\mathcal E$ to $\mathbb R.$

On our bond space $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ we have the bilinear relation $\langle f \mid e \rangle$. If we define (for fixed f) the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R} \text{ as } \ell_f(e) = \langle f \mid e \rangle,$$

then this is a linear map from \mathcal{E} to \mathbb{R} . Thus there exists a (unique) element $\varepsilon \in \mathcal{E}'$ (the algebraic dual of \mathcal{E}) such that

$$\langle f \mid e \rangle = \langle \varepsilon, e \rangle_{\mathcal{E}' \times \mathcal{E}}.$$

Hence we can define the "identification" map

$$Id: \mathcal{F} \mapsto \mathcal{E}' \text{ as } Id(f) = \varepsilon.$$

So $\mathcal F$ can be interpreted/identified as a subspace of $\mathcal E'$.

On our bond space $\mathcal{B}=\mathcal{F}\times\mathcal{E}$ we have the bilinear relation $\langle f\mid e\rangle$. If we define (for fixed f) the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R} \text{ as } \ell_f(e) = \langle f \mid e \rangle,$$

then this is a linear map from \mathcal{E} to \mathbb{R} . Thus there exists a (unique) element $\varepsilon \in \mathcal{E}'$ (the algebraic dual of \mathcal{E}) such that

$$\langle f \mid e \rangle = \langle \varepsilon, e \rangle_{\mathcal{E}' \times \mathcal{E}}.$$

Hence we can define the "identification" map

$$Id: \mathcal{F} \mapsto \mathcal{E}' \text{ as } Id(f) = \varepsilon.$$

So \mathcal{F} can be interpreted/identified as a subspace of \mathcal{E}' . Similarly, we can interpret \mathcal{E} as a subspace of \mathcal{F}' .

When $\mathcal F$ and $\mathcal E$ are normed, linear spaces, and the bilinear product satisfies: There exists a m>0 such that for all $f\in\mathcal F$ and $e\in\mathcal E$ there holds

$$|\langle f \mid e \rangle| \le m||f|||e||.$$

Then the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R}$$
 defined as $\ell_f(e) := \langle f \mid e \rangle$,

is a continuous/bounded linear map from \mathcal{E} to \mathbb{R} .

When $\mathcal F$ and $\mathcal E$ are normed, linear spaces, and the bilinear product satisfies: There exists a m>0 such that for all $f\in\mathcal F$ and $e\in\mathcal E$ there holds

$$|\langle f \mid e \rangle| \le m ||f|| ||e||.$$

Then the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R}$$
 defined as $\ell_f(e) := \langle f \mid e \rangle$,

is a continuous/bounded linear map from $\mathcal E$ to $\mathbb R$.

Thus there exists a (unique) element $\varepsilon \in \mathcal{E}^*$ (the topological dual of \mathcal{E}) such that

$$\langle f \mid e \rangle = \langle \varepsilon, e \rangle_{\mathcal{E}^* \times \mathcal{E}}.$$

When $\mathcal F$ and $\mathcal E$ are normed, linear spaces, and the bilinear product satisfies: There exists a m>0 such that for all $f\in\mathcal F$ and $e\in\mathcal E$ there holds

$$|\langle f \mid e \rangle| \le m ||f|| ||e||.$$

Then the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R}$$
 defined as $\ell_f(e) := \langle f \mid e \rangle$,

is a continuous/bounded linear map from \mathcal{E} to \mathbb{R} .

Thus there exists a (unique) element $\varepsilon \in \mathcal{E}^*$ (the topological dual of \mathcal{E}) such that

$$\langle f \mid e \rangle = \langle \varepsilon, e \rangle_{\mathcal{E}^* \times \mathcal{E}}.$$

So $\mathcal F$ can be interpreted/identified as a subspace of $\mathcal E^*$.

When $\mathcal F$ and $\mathcal E$ are normed, linear spaces, and the bilinear product satisfies: There exists a m>0 such that for all $f\in\mathcal F$ and $e\in\mathcal E$ there holds

$$|\langle f \mid e \rangle| \le m ||f|| ||e||.$$

Then the map

$$\ell_f: \mathcal{E} \mapsto \mathbb{R}$$
 defined as $\ell_f(e) := \langle f \mid e \rangle$,

is a continuous/bounded linear map from \mathcal{E} to \mathbb{R} .

Thus there exists a (unique) element $\varepsilon \in \mathcal{E}^*$ (the topological dual of \mathcal{E}) such that

$$\langle f \mid e \rangle = \langle \varepsilon, e \rangle_{\mathcal{E}^* \times \mathcal{E}}.$$

So $\mathcal F$ can be interpreted/identified as a subspace of $\mathcal E^*$. Similarly, we can interpret $\mathcal E$ as a subspace of $\mathcal F^*$.

End of intermezzo

We have considered \mathcal{E} and \mathcal{F} to be finite-dimensional, i.e., \mathbb{R}^n . Other (finite-dimensional) choices are possible, e.g. a tangent space and co-tangent space (see intermezzo).

We have considered $\mathcal E$ and $\mathcal F$ to be finite-dimensional, i.e., $\mathbb R^n$. Other (finite-dimensional) choices are possible, e.g. a tangent space and co-tangent space (see intermezzo). Since the dimension is not "present" in the definition of a Dirac structure, we can take $\mathcal E$ and $\mathcal F$ to be infinite-dimensional.

We have considered $\mathcal E$ and $\mathcal F$ to be finite-dimensional, i.e., $\mathbb R^n$. Other (finite-dimensional) choices are possible, e.g. a tangent space and co-tangent space (see intermezzo). Since the dimension is not "present" in the definition of a Dirac structure, we can take $\mathcal E$ and $\mathcal F$ to be infinite-dimensional. There are many infinite-dimensional spaces, i.e., function and/or sequence spaces, and so we take a simpler approach, and try to see if we can come up with an example in which

$$V = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \mid f = Je \right\}$$

is an infinite-dimensional Dirac structure.

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle$?

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle$?

A choice is

$$\langle f \mid e \rangle = \int_{\Omega} f(\zeta) e(\zeta) d\zeta.$$

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle$?

A choice is

$$\langle f \mid e \rangle = \int_{\Omega} f(\zeta)e(\zeta)d\zeta.$$

For simplicity, we take $\Omega = [a, b] \subseteq \mathbb{R}$.

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle ?$

A choice is

$$\langle f \mid e \rangle = \int_{\Omega} f(\zeta) e(\zeta) d\zeta.$$

For simplicity, we take $\Omega = [a, b] \subseteq \mathbb{R}$.

Classroom question: Taking this bilinear product, can we think of an J such that $\{f=Je\}$ is a Dirac structure?

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle ?$

A choice is

$$\langle f \mid e \rangle = \int_{\Omega} f(\zeta) e(\zeta) d\zeta.$$

For simplicity, we take $\Omega = [a, b] \subseteq \mathbb{R}$.

Classroom question: Taking this bilinear product, can we think of an J such that $\{f=Je\}$ is a Dirac structure? In particular, we need that

$$\langle f \mid e \rangle = \int_a^b f(\zeta)e(\zeta)d\zeta = \int_a^b (Je)(\zeta)e(\zeta)d\zeta = 0.$$

Classroom question:

If f and e are two (scalar) functions, what would be a logical choice for $\langle f \mid e \rangle ?$

A choice is

$$\langle f \mid e \rangle = \int_{\Omega} f(\zeta) e(\zeta) d\zeta.$$

For simplicity, we take $\Omega = [a, b] \subseteq \mathbb{R}$.

Classroom question: Taking this bilinear product, can we think of an J such that $\{f=Je\}$ is a Dirac structure? In particular, we need that

$$\langle f \mid e \rangle = \int_a^b f(\zeta)e(\zeta)d\zeta = \int_a^b (Je)(\zeta)e(\zeta)d\zeta = 0.$$

What about $Je = \dot{e} = \frac{de}{d\zeta}$?

We calculate

$$\langle f \mid e \rangle = \int_{a}^{b} (Je)(\zeta)e(\zeta)d\zeta = \int_{a}^{b} \dot{e}(\zeta)e(\zeta)d\zeta$$
$$= \int_{a}^{b} \frac{1}{2} \frac{d}{d\zeta} \left(e(\zeta)^{2} \right) d\zeta = \frac{1}{2} e(b)^{2} - \frac{1}{2} e(a)^{2}.$$

We calculate

$$\langle f \mid e \rangle = \int_{a}^{b} (Je)(\zeta)e(\zeta)d\zeta = \int_{a}^{b} \dot{e}(\zeta)e(\zeta)d\zeta$$
$$= \int_{a}^{b} \frac{1}{2} \frac{d}{d\zeta} \left(e(\zeta)^{2} \right) d\zeta = \frac{1}{2} e(b)^{2} - \frac{1}{2} e(a)^{2}.$$

So this is only zero when we put (extra) conditions on e. For instance, e(b)=e(a)=0, or e(b)=e(a), or e(b)=-e(a)

Question:

Given $\mathcal{F} = C(a,b)$ and $\mathcal{E} = C^1(a,b)$. Is

$$\mathcal{D}_{00} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = 0 = e(b) \right\}$$

a Dirac structure?

Question:

Given $\mathcal{F}=C(a,b)$ and $\mathcal{E}=C^1(a,b).$ Is

$$\mathcal{D}_{00} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = 0 = e(b) \right\}$$

a Dirac structure?

Answer: Calculating \mathcal{D}_{00}^{\perp} ;

$$\left\langle \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \mid \begin{pmatrix} f \\ e \end{pmatrix} \right\rangle = 0 \quad \forall \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D}_{00} \Leftrightarrow$$

$$\int_{a}^{b} [f_2(\zeta) - \dot{e}_2(\zeta)] e(\zeta) d\zeta = 0 \quad \forall e \in C^1(a, b).$$

Question:

Given $\mathcal{F} = C(a,b)$ and $\mathcal{E} = C^1(a,b)$. Is

$$\mathcal{D}_{00} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = 0 = e(b) \right\}$$

a Dirac structure?

Answer: Calculating \mathcal{D}_{00}^{\perp} ;

$$\left\langle \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \mid \begin{pmatrix} f \\ e \end{pmatrix} \right\rangle = 0 \quad \forall \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D}_{00} \Leftrightarrow$$

$$\int_a^b [f_2(\zeta) - \dot{e}_2(\zeta)] e(\zeta) d\zeta = 0 \quad \forall e \in C^1(a, b).$$

Thus $f_2(\zeta) = \dot{e}_2(\zeta)$

Question:

Given $\mathcal{F} = C(a,b)$ and $\mathcal{E} = C^1(a,b)$. Is

$$\mathcal{D}_{00} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = 0 = e(b) \right\}$$

a Dirac structure?

Answer: Calculating \mathcal{D}_{00}^{\perp} ;

$$\left\langle \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \mid \begin{pmatrix} f \\ e \end{pmatrix} \right\rangle = 0 \quad \forall \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D}_{00} \Leftrightarrow$$

$$\int_a^b \left[f_2(\zeta) - \dot{e}_2(\zeta) \right] e(\zeta) d\zeta = 0 \quad \forall e \in C^1(a, b).$$

Thus $f_2(\zeta) = \dot{e}_2(\zeta)$, but No boundary conditions. So $\mathcal{D}_{00}^{\perp} \neq \mathcal{D}_{00}$.

Dirac structures, infinite-dimensional

Question:

Given $\mathcal{F}=C(a,b)$ and $\mathcal{E}=C^1(a,b).$ Is

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

a Dirac structure?

Dirac structures, infinite-dimensional

Question:

Given $\mathcal{F} = C(a,b)$ and $\mathcal{E} = C^1(a,b)$. Is

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

a Dirac structure?

Answer: Calculating \mathcal{D}_p^{\perp} leads to (see previous example); $\forall e \in C^1(a,b)$:

$$0 = \int_{a}^{b} [f_{2}(\zeta) - \dot{e}_{2}(\zeta)] e(\zeta) d\zeta + e_{2}(b)e(b) - e_{2}(a)e(a)$$
$$= \int_{a}^{b} [f_{2}(\zeta) - \dot{e}_{2}(\zeta)] e(\zeta) d\zeta + [e_{2}(b) - e_{2}(a)]e(a).$$

Dirac structures, infinite-dimensional

Question:

Given $\mathcal{F} = C(a,b)$ and $\mathcal{E} = C^1(a,b)$. Is

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

a Dirac structure?

Answer: Calculating \mathcal{D}_p^{\perp} leads to (see previous example); $\forall e \in C^1(a,b)$:

$$0 = \int_{a}^{b} [f_{2}(\zeta) - \dot{e}_{2}(\zeta)] e(\zeta) d\zeta + e_{2}(b)e(b) - e_{2}(a)e(a)$$
$$= \int_{a}^{b} [f_{2}(\zeta) - \dot{e}_{2}(\zeta)] e(\zeta) d\zeta + [e_{2}(b) - e_{2}(a)]e(a).$$

Thus $f_2(\zeta) = \dot{e}_2(\zeta)$ and $e_2(b) = e_2(a)$. So $\mathcal{D}_p^{\perp} = \mathcal{D}_p$.

So $\mathcal{D}_p = \left\{ \left(\begin{smallmatrix} f \\ e \end{smallmatrix} \right) \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$ is a Dirac structure. As we did in the finite-dimensional case we can link a differential equation to it, by choosing $f = \dot{x}(t)$ and $e = \mathcal{H}x(t)$.

So $\mathcal{D}_p = \left\{ \left(\begin{smallmatrix} f \\ e \end{smallmatrix} \right) \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$ is a Dirac structure. As we did in the finite-dimensional case we can link a differential equation to it, by choosing $f = \dot{x}(t)$ and $e = \mathcal{H}x(t)$. Since e and f depend on ζ and thus x(t) depends on ζ as well, we now have to write $f = \frac{\partial x}{\partial t}$.

So $\mathcal{D}_p = \left\{ \left(\begin{smallmatrix} f \\ e \end{smallmatrix} \right) \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$ is a Dirac structure. As we did in the finite-dimensional case we can link a differential equation to it, by choosing $f = \dot{x}(t)$ and $e = \mathcal{H}x(t)$. Since e and f depend on ζ and thus x(t) depends on ζ as well, we now have to write $f = \frac{\partial x}{\partial t}$.

 $(f,e)\in \mathcal{D}_p$ is now the same as writing $\mathcal{H}(\cdot)x(\cdot,t)\in C^1(a,b)$ and

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right], \quad \mathcal{H}(a) x(a, t) = \mathcal{H}(b) x(b, t).$$

So $\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$ is a Dirac structure. As we did in the finite-dimensional case we can link a differential equation to it, by choosing $f = \dot{x}(t)$ and $e = \mathcal{H}x(t)$. Since e and f depend on ζ and thus x(t) depends on ζ as well, we now have to write $f = \frac{\partial x}{\partial t}$.

 $(f,e)\in\mathcal{D}_p$ is now the same as writing $\mathcal{H}(\cdot)x(\cdot,t)\in C^1(a,b)$ and

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right], \quad \mathcal{H}(a) x(a, t) = \mathcal{H}(b) x(b, t).$$

So a PDE with Boundary Conditions.

So $\mathcal{D}_p = \left\{ \left(\begin{smallmatrix} f \\ e \end{smallmatrix} \right) \in \mathcal{F} \times \mathcal{E} \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$ is a Dirac structure. As we did in the finite-dimensional case we can link a differential equation to it, by choosing $f = \dot{x}(t)$ and $e = \mathcal{H}x(t)$. Since e and f depend on ζ and thus x(t) depends on ζ as well, we now have to write $f = \frac{\partial x}{\partial t}$.

 $(f,e)\in \mathcal{D}_p$ is now the same as writing $\mathcal{H}(\cdot)x(\cdot,t)\in C^1(a,b)$ and

$$\frac{\partial x}{\partial t}(\zeta,t) = \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta,t) \right], \quad \mathcal{H}(a) x(a,t) = \mathcal{H}(b) x(b,t).$$

So a PDE with Boundary Conditions.

The Dirac structure gives (as before) that along solutions we have $H(t)=\frac{1}{2}\int_a^b x(\zeta,t)\mathcal{H}(\zeta)x(\zeta,t)d\zeta$ is constant.

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions?

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions? We take $\mathcal{H}=1$. So our scalar PDE becomes

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial x}{\partial \zeta}(\zeta, t), \quad x(a, t) = x(b, t).$$

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions? We take $\mathcal{H}=1$. So our scalar PDE becomes

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial x}{\partial \zeta}(\zeta, t), \quad x(a, t) = x(b, t).$$

The solution of this PDE is

$$x(\zeta, t) = x_{0,ext}(t + \zeta)$$

with $x_{0,ext}$ the periodic extension of x_0 (the initial condition).

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions? We take $\mathcal{H}=1$. So our scalar PDE becomes

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial x}{\partial \zeta}(\zeta, t), \quad x(a, t) = x(b, t).$$

The solution of this PDE is

$$x(\zeta, t) = x_{0,ext}(t + \zeta)$$

with $x_{0,ext}$ the periodic extension of x_0 (the initial condition). Even when $x_0 \in \mathcal{E} = C^1(a,b), \ x(t,\cdot) \notin \mathcal{E}!$

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions? We take $\mathcal{H}=1$. So our scalar PDE becomes

$$\frac{\partial x}{\partial t}(\zeta, t) = \frac{\partial x}{\partial \zeta}(\zeta, t), \quad x(a, t) = x(b, t).$$

The solution of this PDE is

existence of solutions.

$$x(\zeta, t) = x_{0,ext}(t + \zeta)$$

with $x_{0,ext}$ the periodic extension of x_0 (the initial condition). Even when $x_0 \in \mathcal{E} = C^1(a,b)$, $x(t,\cdot) \notin \mathcal{E}!$ Once more we see that a Dirac structure does not guarantee

Again we have seen that the Dirac structure implies properties of the solution of a differential equation, but do we have solutions? We take $\mathcal{H}=1$. So our scalar PDE becomes

$$\frac{\partial x}{\partial t}(\zeta,t) = \frac{\partial x}{\partial \zeta}(\zeta,t), \quad x(a,t) = x(b,t).$$

The solution of this PDE is

$$x(\zeta, t) = x_{0,ext}(t + \zeta)$$

with $x_{0,ext}$ the periodic extension of x_0 (the initial condition). Even when $x_0 \in \mathcal{E} = C^1(a,b)$, $x(t,\cdot) \notin \mathcal{E}!$ Once more we see that a Dirac structure does not guarantee existence of solutions. More later.

We have studied Dirac structures for scalar functions, and we can easily extend it to vector valued functions.

We have studied Dirac structures for scalar functions, and we can easily extend it to vector valued functions.

So the bilinear product becomes for $f(\zeta), e(\zeta) \in \mathbb{R}^n$, $\zeta \in [a,b]$

$$\langle f \mid e \rangle = \int_{a}^{b} f(\zeta)^{\top} e(\zeta) d\zeta.$$

We have studied Dirac structures for scalar functions, and we can easily extend it to vector valued functions.

So the bilinear product becomes for $f(\zeta), e(\zeta) \in \mathbb{R}^n$, $\zeta \in [a,b]$

$$\langle f \mid e \rangle = \int_{a}^{b} f(\zeta)^{\top} e(\zeta) d\zeta.$$

Question

Simplify $\langle f \mid e \rangle$ when $f = P_1 \frac{de}{d\zeta}$ with $P_1^\top = P_1 \in \mathbb{R}^{n \times n}$.

We have studied Dirac structures for scalar functions, and we can easily extend it to vector valued functions.

So the bilinear product becomes for $f(\zeta), e(\zeta) \in \mathbb{R}^n$, $\zeta \in [a,b]$

$$\langle f \mid e \rangle = \int_{a}^{b} f(\zeta)^{\top} e(\zeta) d\zeta.$$

Question

Simplify $\langle f \mid e \rangle$ when $f = P_1 \frac{de}{d\zeta}$ with $P_1^{\top} = P_1 \in \mathbb{R}^{n \times n}$.

Answer

$$\int_{a}^{b} \left[P_{1} \frac{de}{d\zeta}(\zeta) \right]^{\top} e(\zeta) d\zeta = \frac{1}{2} \left[e(b)^{\top} P_{1} e(b) - e(a)^{\top} P_{1} e(a) \right].$$

So to make $V=\{f=P_1\frac{de}{d\zeta}\}$ into a Dirac structure, we have to add boundary conditions.

So to make $V=\{f=P_1\frac{de}{d\zeta}\}$ into a Dirac structure, we have to add boundary conditions.

Therefor we define boundary flow and effort

$$\begin{pmatrix} \mathbf{f_{\partial}} \\ \mathbf{e_{\partial}} \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix}}_{\mathbf{R_0}} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix}.$$

So to make $V=\{f=P_1\frac{de}{d\zeta}\}$ into a Dirac structure, we have to add boundary conditions.

Therefor we define boundary flow and effort

$$\begin{pmatrix} \mathbf{f}_{\partial} \\ \mathbf{e}_{\partial} \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix}}_{\mathbf{R}_0} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix}.$$

Question: Show that for $f=P_1\frac{de}{d\zeta}+P_0e$, with $P_k\in\mathbb{R}^{n\times n}$, $P_1^\top=P_1$, $P_0^\top=-P_0$, there holds

$$\langle f \mid e \rangle - f_{\partial}^{\top} e_{\partial} = 0.$$

So to make $V=\{f=P_1\frac{de}{d\zeta}\}$ into a Dirac structure, we have to add boundary conditions.

Therefor we define boundary flow and effort

$$\begin{pmatrix} \mathbf{f_{\partial}} \\ \mathbf{e_{\partial}} \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix}}_{\mathbf{R_0}} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix}.$$

Question: Show that for $f=P_1\frac{de}{d\zeta}+P_0e$, with $P_k\in\mathbb{R}^{n\times n}$, $P_1^\top=P_1$, $P_0^\top=-P_0$, there holds

$$\langle f \mid e \rangle - f_{\partial}^{\top} e_{\partial} = 0.$$

Question: For $\mathcal{F}=C([a,b];\mathbb{R}^n)$ and $\mathcal{E}=C^1([a,b];\mathbb{R}^n)$ define a Dirac structure around $f=P_1\frac{de}{d\zeta}+P_0e$. Furthermore, prove that your candidate Dirac structure is a Dirac structure.

Question: For $\mathcal{F}=C([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ and $\mathcal{E}=C^1([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ define a Dirac structure around $f=P_1\frac{de}{d\zeta}+P_0e$. Furthermore, prove that your candidate Dirac structure is a Dirac structure.

Question: For $\mathcal{F}=C([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ and $\mathcal{E}=C^1([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ define a Dirac structure around $f=P_1\frac{de}{d\zeta}+P_0e$. Furthermore, prove that your candidate Dirac structure is a Dirac structure.

The PDE associated to the above Dirac structure will be $\mathcal{H}(\cdot)x(\cdot,t)\in C^1([a,b];\mathbb{R}^n)$ and

$$\frac{\partial x}{\partial t}(\zeta, t) = P_1 \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right] + P_0 \mathcal{H}(\zeta) x(\zeta, t)$$

with (in)homogeneous boundary conditions.

Question: For $\mathcal{F}=C([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ and $\mathcal{E}=C^1([a,b];\mathbb{R}^n)\times\mathbb{R}^n$ define a Dirac structure around $f=P_1\frac{de}{d\zeta}+P_0e$. Furthermore, prove that your candidate Dirac structure is a Dirac structure.

The PDE associated to the above Dirac structure will be $\mathcal{H}(\cdot)x(\cdot,t)\in C^1([a,b];\mathbb{R}^n)$ and

$$\frac{\partial x}{\partial t}(\zeta, t) = P_1 \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right] + P_0 \mathcal{H}(\zeta) x(\zeta, t)$$

with (in)homogeneous boundary conditions.

The existence problem which we found in the scalar case remains.

As an example of the P_1 class we take n=2, $P_0=0$,

$$P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathcal{H}(\zeta) = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}.$$

As an example of the P_1 class we take n=2, $P_0=0$,

$$P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathcal{H}(\zeta) = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}.$$

Thus

$$\frac{\partial}{\partial t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{\partial x}{\partial t} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{\partial}{\partial \zeta} \begin{bmatrix} \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} x \end{bmatrix} = \frac{\partial}{\partial \zeta} \begin{pmatrix} cx_2 \\ cx_1 \end{pmatrix}.$$

As an example of the P_1 class we take n=2, $P_0=0$,

$$P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathcal{H}(\zeta) = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}.$$

Thus

$$\frac{\partial}{\partial t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{\partial x}{\partial t} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{\partial}{\partial \zeta} \begin{bmatrix} \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} x \end{bmatrix} = \frac{\partial}{\partial \zeta} \begin{pmatrix} cx_2 \\ cx_1 \end{pmatrix}.$$

For x_1 this becomes

$$\frac{\partial^2 x_1}{\partial t^2} = \frac{\partial}{\partial t} \left[\frac{\partial x_1}{\partial t} \right] = \frac{\partial}{\partial t} \left[\frac{\partial c x_2}{\partial \zeta} \right] = c \frac{\partial}{\partial \zeta} \left[\frac{\partial x_2}{\partial t} \right] = c^2 \frac{\partial^2 x_1}{\partial \zeta^2}$$

The wave equation.

Dirac structures, higher spatial dimension.

We have only discussed (potential) infinite-dimensional Dirac structures in one spatial variable. However, there is no fundamental reason for that.

Dirac structures, higher spatial dimension.

We have only discussed (potential) infinite-dimensional Dirac structures in one spatial variable. However, there is no fundamental reason for that. For instance, consider

$$V = \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} 0 & \text{div} \\ \text{grad} & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \right\}$$

with $\Omega \subset \mathbb{R}^3$, and $e_1 \in C^1(\Omega; \mathbb{R})$, $e_2 \in C^1(\Omega; \mathbb{R}^3)$, etc.

Dirac structures, higher spatial dimension.

We have only discussed (potential) infinite-dimensional Dirac structures in one spatial variable. However, there is no fundamental reason for that. For instance, consider

$$V = \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} 0 & \text{div} \\ \text{grad} & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \right\}$$

with $\Omega \subset \mathbb{R}^3$, and $e_1 \in C^1(\Omega; \mathbb{R})$, $e_2 \in C^1(\Omega; \mathbb{R}^3)$, etc.

$$\langle f \mid e \rangle = \int_{\Omega} e_1 \operatorname{div}(e_2) + e_2^{\top} \operatorname{grad}(e_1)$$
$$= \int_{\Omega} \operatorname{div}(e_1 e_2) = \int_{\Gamma} (e_1 e_2)^{\top} n,$$

where Γ is the boundary of Ω and n is the outward unit normal.

Dirac structures, so far.

We have seen that using functions paces, we can define Dirac structures. Furthermore, we can link these infinite-dimensional Dirac structures to (partial) differential equations. However, we have trouble (even in simple cases) to obtain existence of solutions for these PDE's.

Dirac structures, so far.

We have seen that using functions paces, we can define Dirac structures. Furthermore, we can link these infinite-dimensional Dirac structures to (partial) differential equations. However, we have trouble (even in simple cases) to obtain existence of solutions for these PDE's.

To solve this matter we take a more abstract/functional analytic point of view.

Dirac structure, operators

For finite-dimensional spaces we had that $\{f=Je\}$ defines a Dirac structure if and only if $J^{\top}=-J$. How for infinite-dimensional spaces?

Dirac structure, operators

For finite-dimensional spaces we had that $\{f=Je\}$ defines a Dirac structure if and only if $J^{\top}=-J$. How for infinite-dimensional spaces?

Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and let $Q: \mathrm{dom}(Q) \subseteq X \mapsto X$ be a densely defined linear operator.

Definition

The adjoint, Q^* , of Q is defined as follows

$$\mathrm{dom}(Q^*) = \{z \in X \mid \exists w \in X \text{ s.t. } \langle Qx,z \rangle = \langle x,w \rangle, \forall x \in \mathrm{dom}(Q)\}$$

For
$$z \in \text{dom}(Q^*)$$
, we define $Q^*(z) = w$.

Dirac structure, operators

For finite-dimensional spaces we had that $\{f=Je\}$ defines a Dirac structure if and only if $J^{\top}=-J$. How for infinite-dimensional spaces?

Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and let $Q: \mathrm{dom}(Q) \subseteq X \mapsto X$ be a densely defined linear operator.

Definition

The adjoint, Q^* , of Q is defined as follows

$$\mathrm{dom}(Q^*) = \{z \in X \mid \exists w \in X \text{ s.t. } \langle Qx,z \rangle = \langle x,w \rangle, \forall x \in \mathrm{dom}(Q)\}$$

For
$$z \in dom(Q^*)$$
, we define $Q^*(z) = w$.

Definition

- ▶ Q is skew-adjoint when $Q^* = -Q$.
- ightharpoonup Q is self-adjoint when $Q^* = Q$.

Dirac structure, operators

Theorem

Let $\mathcal{F} = \mathcal{E} = X$, with X a Hilbert space, and let $\langle f \mid e \rangle = \langle f, e \rangle_X$. Then

$$\mathcal{D} = \{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je, e \in \text{dom}(J) \}$$

is a Dirac structure if and only if J is skew-adjoint.

Dirac structure, operators

Theorem

Let $\mathcal{F} = \mathcal{E} = X$, with X a Hilbert space, and let $\langle f \mid e \rangle = \langle f, e \rangle_X$. Then

$$\mathcal{D} = \{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je, e \in \text{dom}(J) \}$$

is a Dirac structure if and only if J is skew-adjoint.

Proof: Calculating \mathcal{D}^{\perp} ;

$$\left\langle \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \mid \begin{pmatrix} f \\ e \end{pmatrix} \right\rangle = 0 \quad \forall \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D} \Leftrightarrow$$

$$\langle f_2, e \rangle_X + \langle Je, e_2 \rangle_X = 0 \quad \forall e \in \text{dom}(J).$$

Dirac structure, operators

Theorem

Let $\mathcal{F} = \mathcal{E} = X$, with X a Hilbert space, and let $\langle f \mid e \rangle = \langle f, e \rangle_X$. Then

$$\mathcal{D} = \{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je, e \in \text{dom}(J) \}$$

is a Dirac structure if and only if J is skew-adjoint.

Proof: Calculating \mathcal{D}^{\perp} ;

$$\left\langle \begin{pmatrix} f_2 \\ e_2 \end{pmatrix} \mid \begin{pmatrix} f \\ e \end{pmatrix} \right\rangle = 0 \quad \forall \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{D} \Leftrightarrow$$

$$\langle f_2, e \rangle_X + \langle Je, e_2 \rangle_X = 0 \quad \forall e \in \text{dom}(J).$$

So
$$e_2 \in \text{dom}(J^*)$$
 and $f_2 = -J^*(e_2)$.

We have seen that

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in C(a, b) \times C^1(a, b) \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

is a Dirac structure. However,

We have seen that

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in C(a, b) \times C^1(a, b) \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

is a Dirac structure. However,

- $\triangleright \mathcal{F} \neq \mathcal{E}$;
- $ightharpoonup \mathcal{F}$ nor \mathcal{E} is a Hilbert space,

but

We have seen that

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in C(a, b) \times C^1(a, b) \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

is a Dirac structure. However,

- \triangleright $\mathcal{F} \neq \mathcal{E}$;
- $ightharpoonup \mathcal{F}$ nor \mathcal{E} is a Hilbert space,

but $f=\frac{de}{d\zeta}$ looks very similar to f=Je. Furthermore, the bilinear product $\int_a^b f(\zeta)e(\zeta)d\zeta$ looks very similar to an inner product.

We have seen that

$$\mathcal{D}_p = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in C(a, b) \times C^1(a, b) \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

is a Dirac structure. However,

- $\triangleright \mathcal{F} \neq \mathcal{E}$;
- $ightharpoonup \mathcal{F}$ nor \mathcal{E} is a Hilbert space,

but $f=\frac{de}{d\zeta}$ looks very similar to f=Je. Furthermore, the bilinear product $\int_a^b f(\zeta)e(\zeta)d\zeta$ looks very similar to an inner product. Namely, the inner product of $L^2(a,b)$ -functions.

So we take

- $\mathcal{F} = \mathcal{E} = L^2(a,b)$ all measurable, square integrable, real-valued, scalar functions on the interval (a,b);

So we take

- $\mathcal{F} = \mathcal{E} = L^2(a,b)$ all measurable, square integrable, real-valued, scalar functions on the interval (a,b);

Then J is skew-adjoint, and thus

$$\mathcal{D}_{per} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in L^2(a,b) \times H^1(a,b) \mid f = \frac{de}{d\zeta}, e(a) = e(b) \right\}$$

is a Dirac structure.

Given an infinite-dimensional Dirac structure of the form

$$\mathcal{D}_{\infty} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je \right\}$$

we can easily obtain a finite-dimensional Dirac structure. Therefor we choose e_1, \cdots, e_N (independent) elements of \mathcal{E} , and define $f_k = Je_k$, $k = 1, \cdots N$. Next define

- $\triangleright \mathcal{E}_N := \operatorname{span}\{e_1, \cdots, e_N\} \subset \mathcal{E};$
- $ightharpoonup \mathcal{F}_N := \operatorname{span}\{f_1, \cdots, f_N\} \subset \mathcal{F};$
- ▶ For $(f, e) \in \mathcal{F}_N \times \mathcal{E}_N$ the bilinear product is defined as $\langle f \mid e \rangle_N := \langle f \mid e \rangle$.

Question: Prove that \mathcal{D}_N is a Dirac structure in $\mathcal{F}_N \times \mathcal{E}_N$ if and only if $\dim \mathcal{F}_N = N$.

As an example we consider

$$\mathcal{D}_{per} = \left\{ \begin{pmatrix} f \\ e \end{pmatrix} \in L^2(0,1) \times H^1(0,1) \mid f = \frac{de}{d\zeta}, e(0) = e(1) \right\}.$$

We choose $N \in \mathbb{N}$ and define $h = N^{-1}$. Furthermore $\zeta_k := k * h$, $k = 0, 1, \dots, N$. With this we define "hat" functions

$$e_k(\zeta) = \begin{cases} N(\zeta - \zeta_{k-1}) & \zeta \in [\zeta_{k-1}, \zeta_k]; \\ N(\zeta_{k+1} - \zeta) & \zeta \in [\zeta_k, \zeta_{k+1}]; \\ 0 & \text{elsewhere.} \end{cases}$$

Figure: The hat-functions, e_k

From
$$f_k = Je_k = \frac{de_k}{d\zeta}$$
, we find

$$f_k(\zeta) = \begin{cases} N & \zeta \in (\zeta_{k-1}, \zeta_k); \\ -N & \zeta \in (\zeta_k, \zeta_{k+1}); \\ 0 & \text{elsewhere.} \end{cases}$$

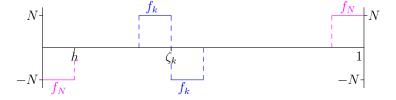


Figure: The step-functions, f_k

From
$$f_k = Je_k = \frac{de_k}{d\zeta}$$
, we find

$$f_k(\zeta) = \begin{cases} N & \zeta \in (\zeta_{k-1}, \zeta_k); \\ -N & \zeta \in (\zeta_k, \zeta_{k+1}); \\ 0 & \text{elsewhere.} \end{cases}$$

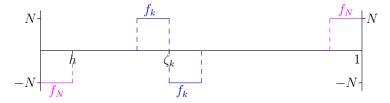


Figure: The step-functions, f_k

It is easy to show that $\dim\left(\operatorname{span}_{k=1,\cdots,N}\{f_k\}\right)=N$, and thus $\mathcal{D}_N=\{(f_e)\in\mathcal{F}_N\times\mathcal{E}_N\mid f=Je\}$ is a Dirac structure (finite-dimensional).

Since $\dim \mathcal{E}_N = \dim \mathcal{F}_N = N$, we can define an equivalent Dirac structure on $\mathbb{R}^N \times \mathbb{R}^N$.

For $e\in\mathcal{E}_N$ and $f\in\mathcal{F}_N$ given as $e(\zeta)=\sum_{k=1}^N a_k e_k(\zeta)$ and $f(\zeta)=\sum_{k=1}^N b_k f_k(\zeta)$, respectively, we define

$$\vec{\mathbf{e}} = egin{pmatrix} a_1 \ dots \ a_N \end{pmatrix} \quad \vec{\mathbf{f}} = egin{pmatrix} b_1 \ dots \ b_N \end{pmatrix}.$$

Since $\dim \mathcal{E}_N = \dim \mathcal{F}_N = N$, we can define an equivalent Dirac structure on $\mathbb{R}^N \times \mathbb{R}^N$.

For $e \in \mathcal{E}_N$ and $f \in \mathcal{F}_N$ given as $e(\zeta) = \sum_{k=1}^N a_k e_k(\zeta)$ and $f(\zeta) = \sum_{k=1}^N b_k f_k(\zeta)$, respectively, we define

$$\vec{\mathbf{e}} = \begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} \quad \vec{\mathbf{f}} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}.$$

By definition, $f_k = Je_k$. Thus the Dirac structure, becomes

$$\mathcal{D}_N = \left\{ \left(\vec{\mathbf{f}} \atop \vec{\mathbf{e}} \right) \in \mathbb{R}^N \times \mathbb{R}^N \mid \vec{\mathbf{f}} = \vec{\mathbf{e}} \right\}.$$

Question: Something weird and/or wrong?

A straightforward calculation gives

$$\langle f_k \mid e_\ell \rangle = \begin{cases} -\frac{1}{2}N^2 & k = \ell + 1\\ \frac{1}{2}N^2 & k = \ell - 1\\ 0 & \text{elsewhere} \end{cases}$$

So

$$\langle f \mid e \rangle \neq \vec{\mathbf{f}}^{\top} \vec{\mathbf{e}},$$

A straightforward calculation gives

$$\langle f_k \mid e_\ell \rangle = \begin{cases} -\frac{1}{2}N^2 & k = \ell + 1 \\ \frac{1}{2}N^2 & k = \ell - 1 \\ 0 & \text{elsewhere} \end{cases}$$

So

$$\langle f \mid e \rangle \neq \vec{\mathbf{f}}^{\top} \vec{\mathbf{e}},$$

but

$$\langle f \mid e \rangle = \vec{\mathbf{f}}^{\top} Q \vec{\mathbf{e}}$$

with $Q_{k,l} = \langle f_k \mid e_\ell \rangle$. (see also Question on Page 7)

Port Hamiltonian systems from analysis to numerics

Abstract Differential Equations

Hans Zwart

University of Twente and Eindhoven University of Technology, The Netherlands

October 8, 2025

Introduction and notation

In this part we go into existence theory for linear PDE's. We will focus on those on a one-dimensional spatial domain, and will study homogeneous and inhomogeneous equations.

Introduction and notation

In this part we go into existence theory for linear PDE's. We will focus on those on a one-dimensional spatial domain, and will study homogeneous and inhomogeneous equations.

Some notation:

- In this part we denote the one dimensional spatial domain by $[0,\ell]$. Hence we shifted it by a. However, we have kept units (which can be lost when choosing the interval [0,1]).
- ▶ The norm on the inner Hilbert space X we denote by $\|\cdot\|$ and the inner product by $\langle\cdot,\cdot\rangle$

To introduce and motivate solutions of a PDE, we consider the following simple PDE with $\zeta \in [0,\ell]$ and $t \geq 0$

$$\frac{\partial w}{\partial t}(\zeta,t) = \frac{\partial w}{\partial \zeta}(\zeta,t), \quad w(\ell,t) = 0, \quad w(\zeta,0) = w_0(\zeta).$$

To introduce and motivate solutions of a PDE, we consider the following simple PDE with $\zeta \in [0,\ell]$ and $t \geq 0$

$$\frac{\partial w}{\partial t}(\zeta,t) = \frac{\partial w}{\partial \zeta}(\zeta,t), \quad w(\ell,t) = 0, \quad w(\zeta,0) = w_0(\zeta).$$

We call a function $w:[0,\ell]\times[0,\infty)\to\mathbb{R}$ a classical solution, if w is continuously differentiable, and for all $t\geq 0$, $\zeta\in[0,\ell]$ the differential equation, initial and boundary condition are satisfied.

To introduce and motivate solutions of a PDE, we consider the following simple PDE with $\zeta \in [0,\ell]$ and $t \geq 0$

$$\frac{\partial w}{\partial t}(\zeta,t) = \frac{\partial w}{\partial \zeta}(\zeta,t), \quad w(\ell,t) = 0, \quad w(\zeta,0) = w_0(\zeta).$$

We call a function $w:[0,\ell]\times[0,\infty)\to\mathbb{R}$ a classical solution, if w is continuously differentiable, and for all $t\geq 0$, $\zeta\in[0,\ell]$ the differential equation, initial and boundary condition are satisfied.

Question: Determine the classical solution for $w_0(\zeta) = \sin(\pi \zeta/\ell)$.

To introduce and motivate solutions of a PDE, we consider the following simple PDE with $\zeta \in [0,\ell]$ and $t \geq 0$

$$\frac{\partial w}{\partial t}(\zeta,t) = \frac{\partial w}{\partial \zeta}(\zeta,t), \quad w(\ell,t) = 0, \quad w(\zeta,0) = w_0(\zeta).$$

We call a function $w:[0,\ell]\times[0,\infty)\to\mathbb{R}$ a classical solution, if w is continuously differentiable, and for all $t\geq 0,\ \zeta\in[0,\ell]$ the differential equation, initial and boundary condition are satisfied.

Question: Determine the classical solution for $w_0(\zeta) = \sin(\pi \zeta/\ell)$.

History has shown that this concept is too restrictive, and that a weaker concept of a solution was needed. We illustrate this for the same PDE.

We take a smooth test function $\phi(\zeta)$ and integrate over the spatial domain.

We take a smooth <u>test function</u> $\phi(\zeta)$ and integrate over the spatial domain.

$$\begin{split} \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t}(\zeta,t) d\zeta &= \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) d\zeta \quad \text{(PDE)} \\ \text{(int. by parts)} &= \left[\phi(\zeta) w(\zeta,t)\right]_0^\ell - \int_0^\ell \dot{\phi}(\zeta) w(\zeta,t) d\zeta \\ \text{(b.c.)} &= -\phi(0) w(0,t) - \int_0^\ell \dot{\phi}(\zeta) w(\zeta,t) d\zeta. \end{split}$$

If we take test functions satisfying $\phi(0) = 0$, we find

$$\frac{d}{dt} \int_0^\ell \phi(\zeta) w(\zeta,t) d\zeta = \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t}(\zeta,t) d\zeta = -\int_0^\ell \dot{\phi}(\zeta) w(\zeta,t) d\zeta.$$

$$\frac{d}{dt} \int_0^\ell \phi(\zeta) w(\zeta, t) d\zeta = \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t} (\zeta, t) d\zeta = -\int_0^\ell \dot{\phi}(\zeta) w(\zeta, t) d\zeta.$$

Integrate this expression with respect to time from t=0 to $t=t_{\it f}$

$$\int_0^\ell \phi(\zeta)w(\zeta,t_f)d\zeta - \int_0^\ell \phi(\zeta)w(\zeta,0)d\zeta = -\int_0^{t_f} \int_0^\ell \dot{\phi}(\zeta)w(\zeta,t)d\zeta.$$

$$\frac{d}{dt} \int_0^\ell \phi(\zeta) w(\zeta, t) d\zeta = \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t} (\zeta, t) d\zeta = -\int_0^\ell \dot{\phi}(\zeta) w(\zeta, t) d\zeta.$$

Integrate this expression with respect to time from t=0 to $t=t_f$

$$\int_0^\ell \phi(\zeta)w(\zeta,t_f)d\zeta - \int_0^\ell \phi(\zeta)w(\zeta,0)d\zeta = -\int_0^{t_f} \int_0^\ell \dot{\phi}(\zeta)w(\zeta,t)d\zeta.$$

You see there are no derivatives of \boldsymbol{w} taken anymore.

$$\frac{d}{dt} \int_0^\ell \phi(\zeta) w(\zeta, t) d\zeta = \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t} (\zeta, t) d\zeta = -\int_0^\ell \dot{\phi}(\zeta) w(\zeta, t) d\zeta.$$

Integrate this expression with respect to time from t=0 to $t=t_{\it f}$

$$\int_0^\ell \phi(\zeta)w(\zeta,t_f)d\zeta - \int_0^\ell \phi(\zeta)w(\zeta,0)d\zeta = -\int_0^{t_f} \int_0^\ell \dot{\phi}(\zeta)w(\zeta,t)d\zeta.$$

You see there are no derivatives of w taken anymore. Now we call $w(\zeta,t)$ a <u>weak</u> or <u>mild solution</u> of the PDE if the above equation is satisfied for all smooth test functions ϕ satisfying $\phi(0)=0$.

$$\frac{d}{dt} \int_0^\ell \phi(\zeta) w(\zeta, t) d\zeta = \int_0^\ell \phi(\zeta) \frac{\partial w}{\partial t}(\zeta, t) d\zeta = -\int_0^\ell \dot{\phi}(\zeta) w(\zeta, t) d\zeta.$$

Integrate this expression with respect to time from t=0 to $t=t_{\it f}$

$$\int_0^\ell \phi(\zeta)w(\zeta,t_f)d\zeta - \int_0^\ell \phi(\zeta)w(\zeta,0)d\zeta = -\int_0^{t_f} \int_0^\ell \dot{\phi}(\zeta)w(\zeta,t)d\zeta.$$

You see there are no derivatives of w taken anymore.

Now we call $w(\zeta,t)$ a <u>weak</u> or <u>mild solution</u> of the PDE if the above equation is satisfied for all smooth test functions ϕ satisfying $\phi(0)=0$.

The set of initial conditions must be chosen. With this you also choose the set in which $w(\cdot,t_f)$ will be. We denote this (linear) space by X.

Question For a given $w_0 \in X = L^2(0, \ell)$ show that

$$w(\zeta,t) = \begin{cases} w_0(\zeta+t) & \zeta+t \in [0,\ell] \\ 0 & \text{elsewhere} \end{cases}$$

is the weak solution of

$$\frac{\partial w}{\partial t}(\zeta, t) = \frac{\partial w}{\partial \zeta}(\zeta, t), \quad w(\ell, t) = 0, \quad w(\zeta, 0) = w_0(\zeta).$$

It is easy to see that a classical solution is always a weak solution, but the converse need not to hold.

It is easy to see that a classical solution is always a weak solution, but the converse need not to hold.

We will now study when our PDE has a weak solution.

It is easy to see that a classical solution is always a weak solution, but the converse need not to hold.

We will now study when our PDE has a weak solution.

Note there is a difference between knowing the existence of a solution and having the form/expression of the solution. The expression for the solution can be hard/impossible to find. So we concentrate on existence.

It is easy to see that a classical solution is always a weak solution, but the converse need not to hold.

We will now study when our PDE has a weak solution.

Note there is a difference between knowing the existence of a solution and having the form/expression of the solution. The expression for the solution can be hard/impossible to find. So we concentrate on existence.

We concentrate on solutions satisfying the additional property that

$$||x(t)|| \le ||x_0|| \quad \forall t > 0$$
 (contraction),

where $\|\cdot\|$ denotes the norm of the state space X.

Weak and classical solutions of PDE's

It is easy to see that a classical solution is always a weak solution, but the converse need not to hold.

We will now study when our PDE has a weak solution.

Note there is a difference between knowing the existence of a solution and having the form/expression of the solution. The expression for the solution can be hard/impossible to find. So we concentrate on existence.

We concentrate on solutions satisfying the additional property that

$$||x(t)|| \le ||x_0|| \quad \forall t > 0$$
 (contraction),

where $\|\cdot\|$ denotes the norm of the state space X. Since our PDE's are linear, the above inequality implies that the solution with depend continuously on the initial condition, i.e., for all $t\geq 0$

$$||x_1(t) - x_2(t)|| \le ||x_{10} - x_{20}||$$
 (continuity w.r.t. initial condition).

Intermezzo

Consider a linear, time invariant differential equation on the space X. Assume that for every $x_0 \in X$ there exists a (weak) solution denoted by x(t). Furthermore, assume that this solution depends continuously on the initial condition.

Consider a linear, time invariant differential equation on the space X. Assume that for every $x_0 \in X$ there exists a (weak) solution denoted by x(t). Furthermore, assume that this solution depends continuously on the initial condition.

Define for $t \ge 0$ the map $T(t): X \mapsto X$ as

$$T(t)x_0 = x(t).$$

Then it has the following properties:

- ightharpoonup T(0) = I;
- ► $T(t_1 + t_2) = T(t_1)T(t_2)$, $t_1, t_2, \in [0, \infty)$, time-invariance;
- ▶ T(t) is for every $t \ge 0$ a linear and bounded operator, i.e., $T(t) \in \mathcal{L}(X)$.

Consider a linear, time invariant differential equation on the space X. Assume that for every $x_0 \in X$ there exists a (weak) solution denoted by x(t). Furthermore, assume that this solution depends continuously on the initial condition.

Define for $t \ge 0$ the map $T(t): X \mapsto X$ as

$$T(t)x_0 = x(t).$$

Then it has the following properties:

- ightharpoonup T(0) = I;
- ► $T(t_1 + t_2) = T(t_1)T(t_2)$, $t_1, t_2, \in [0, \infty)$, time-invariance;
- ▶ T(t) is for every $t \ge 0$ a linear and bounded operator, i.e., $T(t) \in \mathcal{L}(X)$.

If additionally the following holds

$$\lim_{t\downarrow 0}\|T(t)x_0-x_0\|=0,\quad \text{\underline{continuity at } $t=0$,}$$

then $(T(t))_{t\geq 0}$ is a strongly continuous semigroup, or short C_0 -semigroup.

Intermezzo: Strongly continuous semigroups, examples

It is not hard to show that on $X=\mathbb{R}^n$ the exponential e^{At} is a C_0 -semigroup.

Intermezzo: Strongly continuous semigroups, examples

It is not hard to show that on $X = \mathbb{R}^n$ the exponential e^{At} is a C_0 -semigroup.

Question Show that the solution map of the PDE

$$\frac{\partial w}{\partial t}(\zeta, t) = \frac{\partial w}{\partial \zeta}(\zeta, t), \quad w(\ell, t) = 0, \quad w(\zeta, 0) = w_0(\zeta).$$

is a C_0 -semigroup.

Since T(t) came from x(t) via $x(t) = T(t)x_0$, we have

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{x(t+h) - x(t)}{h} = \lim_{h \downarrow 0} \frac{T(t+h)x_0 - T(t)x_0}{h}.$$

Since T(t) came from x(t) via $x(t) = T(t)x_0$, we have

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{x(t+h) - x(t)}{h} = \lim_{h \downarrow 0} \frac{T(t+h)x_0 - T(t)x_0}{h}.$$

Thus by the semigroup and boundedness property,

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{T(t)T(h)x_0 - T(t)x_0}{h} = T(t)\lim_{h \downarrow 0} \frac{T(h)x_0 - x_0}{h}.$$

Since T(t) came from x(t) via $x(t) = T(t)x_0$, we have

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{x(t+h) - x(t)}{h} = \lim_{h \downarrow 0} \frac{T(t+h)x_0 - T(t)x_0}{h}.$$

Thus by the semigroup and boundedness property,

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{T(t)T(h)x_0 - T(t)x_0}{h} = T(t) \lim_{h \downarrow 0} \frac{T(h)x_0 - x_0}{h}.$$

We define (whenever it exists)

$$Ax_0 := \lim_{h \downarrow 0} \frac{T(h)x_0 - x_0}{h}.$$

Since T(t) came from x(t) via $x(t) = T(t)x_0$, we have

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{x(t+h) - x(t)}{h} = \lim_{h \downarrow 0} \frac{T(t+h)x_0 - T(t)x_0}{h}.$$

Thus by the semigroup and boundedness property,

$$\dot{x}(t) = \lim_{h \downarrow 0} \frac{T(t)T(h)x_0 - T(t)x_0}{h} = T(t) \lim_{h \downarrow 0} \frac{T(h)x_0 - x_0}{h}.$$

We define (whenever it exists)

$$Ax_0 := \lim_{h \downarrow 0} \frac{T(h)x_0 - x_0}{h}.$$

With this we obtain the (abstract) differential equation

$$\dot{x}(t) = T(t)Ax_0 = AT(t)x_0 = Ax(t).$$

For the linear operator A we denote its domain by $\operatorname{dom}(A)$.

For the linear operator A we denote its domain by $\operatorname{dom}(A)$. Given now a linear operator $A:\operatorname{dom}(A)\subseteq X\mapsto X$, under which conditions does the abstract differential equation

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

have solution, i.e., when do we have the existence of a C_0 -semigroup?

For the linear operator A we denote its domain by $\mathrm{dom}(A)$. Given now a linear operator $A:\mathrm{dom}(A)\subseteq X\mapsto X$, under which conditions does the abstract differential equation

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

have solution, i.e., when do we have the existence of a ${\cal C}_0$ -semigroup?

For X being a Hilbert space (from now on standard assumption) we have the following:

Theorem

If A is skew-adjoint, i.e., $A^* = -A$, then A generates a C_0 -semigroup satisfying

- ▶ ||T(t)|| = 1 for all $t \ge 0$;
- ▶ T(t) can be extended to the whole real time, and $T(t_1+t_2)=T(t_1)T(t_2),\ t_1,t_2\in\mathbb{R}$ and $\|T(t)\|=1$ for all $t\in\mathbb{R}$, unitary group.

Theorem

If A is skew-adjoint, i.e., $A^* = -A$, then A generates a C_0 -semigroup satisfying

- ▶ ||T(t)|| = 1 for all $t \ge 0$;
- ▶ T(t) can be extended to the whole real time, and $T(t_1+t_2)=T(t_1)T(t_2),\ t_1,t_2\in\mathbb{R}$ and $\|T(t)\|=1$ for all $t\in\mathbb{R},\$ unitary group.

Theorem

If A is dissipative, i.e., $\langle Ax, x \rangle \leq 0 \ \forall x \in \mathrm{dom}(A)$, and if A^* is dissipative, then A generates a C_0 -semigroup satisfying $\|T(t)\| \leq 1$ for all $t \geq 0$; contraction semigroup.

Theorem

If A is skew-adjoint, i.e., $A^* = -A$, then A generates a C_0 -semigroup satisfying

- ▶ ||T(t)|| = 1 for all $t \ge 0$;
- ▶ T(t) can be extended to the whole real time, and $T(t_1+t_2)=T(t_1)T(t_2),\ t_1,t_2\in\mathbb{R}$ and $\|T(t)\|=1$ for all $t\in\mathbb{R},\ \underline{unitary\ group}.$

Theorem

If A is dissipative, i.e., $\langle Ax, x \rangle \leq 0 \ \forall x \in \mathrm{dom}(A)$, and if A^* is dissipative, then A generates a C_0 -semigroup satisfying $\|T(t)\| \leq 1$ for all $t \geq 0$; contraction semigroup.

For $x_0 \in \text{dom}(A)$ the function $x(t) = T(t)x_0$ a classical solution. For $x_0 \in X$ it is a weak solution.

Intermezzo: Useful lemma

Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let $Q \in \mathcal{L}(X)$ satisfying $Q = Q^*$, and $\langle x, Qx \rangle \geq m \|x\|^2$, $\forall x \in X$.

Question: Prove that if J is skew-adjoint in X, then JQ is skew-adjoint in the inner product $\langle x,z\rangle_Q:=\langle x,Qz\rangle.$

End of intermezzo

Introduction

We have now the right basis in operator theory/functional analysis and PDE theory to study the existence of solutions for a PDE with an underlying Dirac structure. We had:

Theorem

Let $\mathcal{F}=\mathcal{E}=X$, with X a Hilbert space, and let $\langle f\mid e\rangle=\langle f,e\rangle_X$. Then

$$\mathcal{D} = \{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je, e \in \text{dom}(J) \}$$

is a Dirac structure if and only if J is skew-adjoint.

Introduction

We have now the right basis in operator theory/functional analysis and PDE theory to study the existence of solutions for a PDE with an underlying Dirac structure. We had:

Theorem

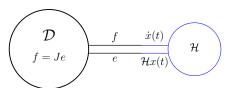
Let $\mathcal{F}=\mathcal{E}=X$, with X a Hilbert space, and let $\langle f\mid e\rangle=\langle f,e\rangle_X$. Then

$$\mathcal{D} = \{ \begin{pmatrix} f \\ e \end{pmatrix} \in \mathcal{F} \times \mathcal{E} \mid f = Je, e \in \text{dom}(J) \}$$

is a Dirac structure if and only if J is skew-adjoint.

Furthermore: a skew-adjoint J generates a C_0 -semigroup (unitary group) on the Hilbert space X.

Let J be skew-adjoint on the Hilbert space X with inner product $\langle\cdot,\cdot\rangle$ and consider the abstract differential equation, given as

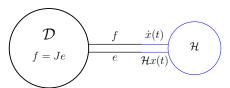


Question: Does the corresponding abstract differential equation

$$\dot{x}(t) = J\mathcal{H}x(t), \qquad x(0) = x_0$$

possess a (unique) solution for all $x_0 \in X$?

Let J be skew-adjoint on the Hilbert space X with inner product $\langle\cdot,\cdot\rangle$ and consider the abstract differential equation, given as

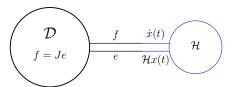


Question: Does the corresponding abstract differential equation

$$\dot{x}(t) = J\mathcal{H}x(t), \qquad x(0) = x_0$$

possess a (unique) solution for all $x_0 \in X$? Yes, but we need that $mI \le \mathcal{H} \le MI$ for some m, M > 0.

Let J be skew-adjoint on the Hilbert space X with inner product $\langle\cdot,\cdot\rangle$ and consider the abstract differential equation, given as



Question: Does the corresponding abstract differential equation

$$\dot{x}(t) = J\mathcal{H}x(t), \qquad x(0) = x_0$$

possess a (unique) solution for all $x_0 \in X$? Yes, but we need that $mI \leq \mathcal{H} \leq MI$ for some m, M > 0. If $\frac{1}{2}\langle x, \mathcal{H}x \rangle$ has the meaning "energy", then the solution exists for every initial condition with finite energy, and the energy stays constant along the solution.

For our class of PDE's on the spatial interval $[0,\ell]$

$$\frac{\partial x}{\partial t}(\zeta, t) = P_1 \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right] + P_0 \mathcal{H}(\zeta) x(\zeta, t),$$

we have the associated Dirac structure

$$\mathcal{D} = \left\{ f = P_1 \frac{de}{d\zeta} + P_0 e, \begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix}}_{R_0} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix} \right\}.$$

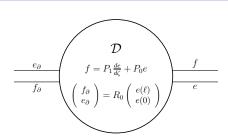
For our class of PDE's on the spatial interval $[0,\ell]$

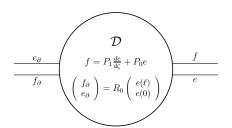
$$\frac{\partial x}{\partial t}(\zeta, t) = P_1 \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right] + P_0 \mathcal{H}(\zeta) x(\zeta, t),$$

we have the associated Dirac structure

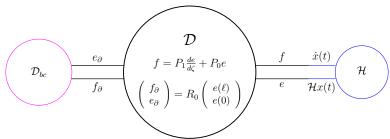
$$\mathcal{D} = \left\{ f = P_1 \frac{de}{d\zeta} + P_0 e, \begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix}}_{\mathbf{R}_0} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix} \right\}.$$

We take $\mathcal{F}=\mathcal{E}=L^2(0,\ell)$, $\langle f|e\rangle=\langle f,e\rangle$, and in \mathcal{D} we restrict e to $H^1(0,\ell)$.

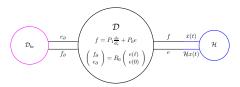




We connect it at one end to a Hamiltonian, and on the other end to another Dirac structure.



The PDE associated to the connection



is given as

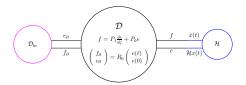
$$\frac{\partial x}{\partial t}(\zeta, t) = P_1 \frac{\partial}{\partial \zeta} \left[\mathcal{H}(\zeta) x(\zeta, t) \right] + P_0 \mathcal{H}(\zeta) x(\zeta, t),$$

with boundary condition

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} \in \operatorname{ran} \begin{pmatrix} F \\ E \end{pmatrix}.$$

Theorem (Le Gorrec, Maschke & Z. '05)

Assume that $P_0 = -P_0^{\top}$, $P_1 = P_1^{\top}$, P_1 invertible and $0 < mI \le \mathcal{H}(\zeta) \le MI$, for all $\zeta \in [0,\ell]$. Then the PDE associated to the connection



has for every $x_0 \in X$ a unique weak solution satisfying $\|x(t)\|_{\mathcal{H}} = \|x_0\|_{\mathcal{H}}$, $t \in \mathbb{R}$,

Or equivalently, the associated A generates a unitary group on $L^2([0,\ell];\mathbb{R}^n)$ with energy norm $\|x\|_{\mathcal{H}}^2 = \langle x,\mathcal{H}x\rangle$.

Question: How many boundary conditions does the previous PDE have?

Question: How many boundary conditions does the previous PDE have?

Question: Define the Hamiltonian $H(t) := \frac{1}{2} \langle x(t), \mathcal{H}x(t) \rangle$. What do you know about $\dot{H}(t)$?

Question: How many boundary conditions does the previous PDE have?

Question: Define the Hamiltonian $H(t):=\frac{1}{2}\langle x(t),\mathcal{H}x(t)\rangle$. What do you know about $\dot{H}(t)$?

Note that the boundary conditions can be written in the more familiar form

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} \in \ker \begin{pmatrix} E^T & F^T \end{pmatrix},$$

Question: How many boundary conditions does the previous PDE have?

Question: Define the Hamiltonian $H(t):=\frac{1}{2}\langle x(t),\mathcal{H}x(t)\rangle$. What do you know about $\dot{H}(t)$?

Note that the boundary conditions can be written in the more familiar form

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} \in \ker \begin{pmatrix} E^T & F^T \end{pmatrix},$$

or

$$(I + \Theta \quad I - \Theta) \begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = 0,$$

with Θ unitary.

Question: How many boundary conditions does the previous PDE have?

Question: Define the Hamiltonian $H(t):=\frac{1}{2}\langle x(t),\mathcal{H}x(t)\rangle$. What do you know about $\dot{H}(t)$?

Note that the boundary conditions can be written in the more familiar form

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} \in \ker \begin{pmatrix} E^T & F^T \end{pmatrix},$$

or

$$(I + \Theta \quad I - \Theta) \begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = 0,$$

with Θ unitary.

With this, the previous theorem can be reformulated.

Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. '05, Jacob & Z '11) Given our port-Hamiltonian partial differential equation

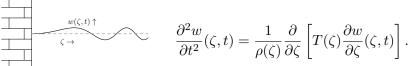
$$\frac{\partial x}{\partial t}(\zeta, t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta, t)\right]$$

with the properties on P_0 , P_1 and \mathcal{H} , and boundary conditions $W_B\left(\begin{smallmatrix} f_\partial \\ e_\partial \end{smallmatrix} \right) = 0$, W_B a $n \times 2n$ -matrix. Then the following are equivalent:

- ► The PDE has for every $x_0 \in X$ a unique weak solution satisfying $||x(t)||_{\mathcal{H}} = ||x_0||_{\mathcal{H}}$, $t \in \mathbb{R}$;
- W_B can be written as $S\left(I+\Theta I-\Theta\right)$ with S invertible and Θ unitary;
- ▶ W_B has full rank, and $\dot{H}(0) = 0$ for all (smooth) initial conditions satisfying the boundary conditions.

Example

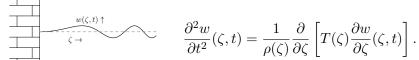
As our (running) example we consider the vibrating string



With ρ the mass density, and T Young's modulus.

Example

As our (running) example we consider the vibrating string



$$\frac{\partial^2 w}{\partial t^2}(\zeta,t) = \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right]$$

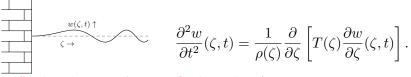
With ρ the mass density, and T Young's modulus.

We choose $x_1 := \rho \frac{\partial w}{\partial t}$ (the momentum), $x_2 := \frac{\partial w}{\partial \ell}$ (the strain), and write the PDE as

$$\frac{\partial}{\partial t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (\zeta, t) = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{=P_1} \underbrace{\frac{\partial}{\partial \zeta}}_{=Q_1} \underbrace{\begin{pmatrix} \frac{1}{\rho(\zeta)} & 0 \\ 0 & T(\zeta) \end{pmatrix}}_{=\mathcal{H}} x(\zeta, t)$$

Boundary conditions and power balance

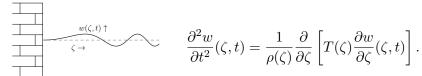
Our vibrating string



is fixed at $\zeta=0$ and moves freely at $\zeta=\ell.$

Boundary conditions and power balance

Our vibrating string



is fixed at $\zeta=0$ and moves freely at $\zeta=\ell$. In the state variables $x_1=\rho\frac{\partial w}{\partial t}$ and $x_2=\frac{\partial w}{\partial \zeta}$ this gives the (boundary) conditions

$$x_1(0,t) = 0$$
 and $x_2(\ell,t) = 0$.

Boundary conditions and power balance

Our vibrating string

$$\frac{\partial^2 w}{\partial t^2}(\zeta,t) = \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right].$$

is fixed at $\zeta=0$ and moves freely at $\zeta=\ell$. In the state variables $x_1=\rho\frac{\partial w}{\partial t}$ and $x_2=\frac{\partial w}{\partial \zeta}$ this gives the (boundary) conditions

$$x_1(0,t) = 0$$
 and $x_2(\ell,t) = 0$.

The power balance becomes

$$\dot{H}(t) = \frac{1}{2} \left[(\mathcal{H}x)^T (\zeta, t) P_1 (\mathcal{H}x) (\zeta, t) \right]_0^{\ell}$$

$$= \frac{1}{2} \left[\begin{pmatrix} \frac{1}{\rho(\zeta)} x_1(\zeta, t) \\ T(\zeta) x_2(\zeta, t) \end{pmatrix}^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\rho(\zeta)} x_1(\zeta, t) \\ T(\zeta) x_2(\zeta, t) \end{pmatrix} \right]_0^{\ell} = 0.$$

$$ightharpoonup P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is an invertible 2×2 matrix $(n=2)$.

- $ightharpoonup P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is an invertible 2×2 matrix (n=2).
- $ightharpoonup P_0 = 0$, so skew-symmetric.

- $ightharpoonup P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is an invertible 2×2 matrix (n=2).
- $ightharpoonup P_0 = 0$, so skew-symmetric.
- If $0 < m \le T(\zeta)$, $\rho(\zeta)^{-1} \le M$ for all ζ , then $\mathcal{H}(\zeta) = \begin{pmatrix} \rho(\zeta)^{-1} & 0 \\ 0 & T(\zeta) \end{pmatrix} \text{ satisfies } mI_2 \le \mathcal{H}(\zeta) \le MI_2.$

▶
$$P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is an invertible 2×2 matrix $(n = 2)$.

- $ightharpoonup P_0 = 0$, so skew-symmetric.
- If $0 < m \le T(\zeta)$, $\rho(\zeta)^{-1} \le M$ for all ζ , then $\mathcal{H}(\zeta) = \begin{pmatrix} \rho(\zeta)^{-1} & 0 \\ 0 & T(\zeta) \end{pmatrix} \text{ satisfies } mI_2 \le \mathcal{H}(\zeta) \le MI_2.$

$$W_B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} R_0^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \text{ has rank 2}.$$

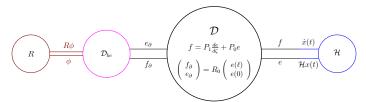
Now we check the conditions.

- ▶ $P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is an invertible 2×2 matrix (n = 2).
- $ightharpoonup P_0 = 0$, so skew-symmetric.
- If $0 < m \le T(\zeta), \rho(\zeta)^{-1} \le M$ for all ζ , then $\mathcal{H}(\zeta) = \begin{pmatrix} \rho(\zeta)^{-1} & 0 \\ 0 & T(\zeta) \end{pmatrix} \text{ satisfies } mI_2 \le \mathcal{H}(\zeta) \le MI_2.$
- $ightharpoonup W_B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} R_0^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$ has rank 2.
- $\dot{H}(0) = 0.$

Thus our pH system has for every $x_0 \in X$ a unique weak solution for $t \in \mathbb{R}$ with constant energy.

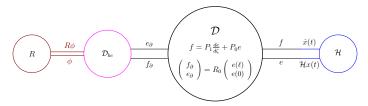
Dirac and PDE

Assume that we add a damping to the left hand side of \mathcal{D}_{bc} .



Dirac and PDE

Assume that we add a damping to the left hand side of \mathcal{D}_{bc} .



Question: What would now hold for $\dot{H}(t)$?

Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. '05, Jacob & Z '11) Given our port-Hamiltonian partial differential equation

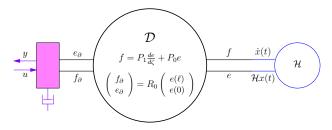
$$\frac{\partial x}{\partial t}(\zeta, t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta, t)\right]$$

with the properties on P_0 , P_1 and \mathcal{H} , and boundary conditions $W_B\left(\begin{smallmatrix} f_\partial \\ e_\partial \end{smallmatrix} \right) = 0$, W_B a $n \times 2n$ -matrix. Then the following are equivalent:

- ▶ The PDE has for every $x_0 \in X$ a unique weak solution satisfying $||x(t)||_{\mathcal{H}} \le ||x_0||_{\mathcal{H}}$, $t \ge 0$, i.e, a <u>contraction</u> semigroup;
- ▶ W_B can be written as $S\left(I+V \quad I-V\right)$ with S invertible and V satisfies $VV^{\top} < I$;
- ▶ W_B has <u>full rank</u>, and $\dot{H}(0) \le 0$ for all (smooth) initial conditions satisfying the boundary conditions.

Input and outputs

We don't only want to study homogeneous PDE's, but also want to allow for control/inputs and observations/outputs. Assume that we add an input and output to the left hand side of \mathcal{D}_{bc} .



This is a port-Hamiltonian system with damping, and inputs/outputs.

Input and outputs

The partial differential equation associated to

$$\begin{array}{c|c} \mathcal{D} \\ f = P_1 \frac{dc}{d\zeta} + P_0 e \\ \begin{pmatrix} f_0 \\ e_0 \end{pmatrix} = R_0 \begin{pmatrix} e(\ell) \\ e(0) \end{pmatrix} \\ \end{array} \begin{array}{c} f & \dot{x}(t) \\ \hline e & \mathcal{H}x(t) \\ \end{array} \begin{array}{c} \mathcal{H} \\ \end{array}$$

is

$$\begin{split} \frac{\partial x}{\partial t}(\zeta,t) &= \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta,t)\right]; \\ 0 &= W_{B,1} \left(\begin{smallmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{smallmatrix} \right); \\ u(t) &= W_{B,2} \left(\begin{smallmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{smallmatrix} \right); \\ y(t) &= W_C \left(\begin{smallmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{smallmatrix} \right). \end{split}$$

Solution to inhomogeneous pH-PDE

Theorem (Z, Le Gorrec, Maschke & Villegas '10, Jacob & Z '11)

Given our port-Hamiltonian partial differential equation

$$\frac{\partial x}{\partial t}(\zeta, t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta, t)\right]$$

with the properties on P_0 , P_1 and \mathcal{H} , and boundary conditions, input and outputs

$$\begin{pmatrix} W_{B,1} \\ W_{B,2} \\ W_C \end{pmatrix} \begin{pmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ u(t) \\ y(t) \end{pmatrix}$$

with $W_B:={W_{B,1}\choose W_{B,2}}$ a <u>full rank</u> $n\times 2n$ -matrix. If there exists a unique weak solution when $\underline{u\equiv 0}$, then for every initial condition in X and every $u\in L^2((0,t_1);\mathbb{R}^m)$ there is a unique solution with $y\in L^2((0,t_1);\mathbb{R}^k)$, $t_1>0$ arbitrary.

Solution to inhomogeneous pH-PDE

Comments

- Note that we have simple condition for existence of the homogeneous PDE.
- ▶ It is standard "PDE-theory" to show that for sufficiently smooth inputs you have existence, see [Le Gorrec, Maschke & Z '05].
- ► The proof of this theorem is based on a result by G. Weiss from 1994.

$$\downarrow y$$

$$\begin{split} \frac{\partial^2 w}{\partial t^2}(\zeta,t) &= \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right] \\ \frac{\partial w}{\partial t}(0,t) &= 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell,t) = u(t) \\ \frac{\partial w}{\partial t}(\ell,t) &= y(t). \end{split}$$

$$\frac{\partial^2 w}{\partial t^2}(\zeta, t) = \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t) \right]$$

$$\frac{\partial w}{\partial t}(0, t) = 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell, t) = u(t)$$

$$\frac{\partial w}{\partial t}(\ell, t) = y(t).$$

So we control the force and measure the velocity at the right end.

$$\frac{\partial^{2}w}{\partial t^{2}}(\zeta,t) = \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right]$$

$$\frac{\partial w}{\partial t}(0,t) = 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell,t) = u(t)$$

$$\frac{\partial w}{\partial t}(\ell,t) = y(t).$$

So we control the force and measure the velocity at the right end. Since have shown that for $u\equiv 0$ we have a solution (even a unitary group), we have a unique (weak) solution for all initial conditions in X and every $u\in L^2(0,t_1)$.

Transfer function, general

Let Σ be a system with input u(t), output y(t) and remaining variables z(t).

Transfer function, general

Let Σ be a system with input u(t), output y(t) and remaining variables z(t).

Let $s\in\mathbb{C}$ and $u_0\in U$ (input (value) space) be given. If there exists a solution (u(t),z(t),y(t)) of the form $(u(t),z(t),y(t))=(u_0e^{st},z_0e^{st},y_0e^{st})$, then this is called an exponential solution.

Transfer function, general

Let Σ be a system with input u(t), output y(t) and remaining variables z(t).

Let $s\in\mathbb{C}$ and $u_0\in U$ (input (value) space) be given. If there exists a solution (u(t),z(t),y(t)) of the form $(u(t),z(t),y(t))=(u_0e^{st},z_0e^{st},y_0e^{st})$, then this is called an exponential solution.

Let $s\in\mathbb{C}$ be given. If for every $u_0\in U$, there exists a (unique) exponential solution, then the map $G(s):U\mapsto Y,$ $G(s)u_0=y_0$ is called the transfer function at s of the system Σ .

For our pH-PDE

$$\frac{\partial x}{\partial t}(\zeta, t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta, t)\right];$$

$$0 = W_{B,1} \left(\frac{f_{\partial}(t)}{e_{\partial}(t)}\right); \qquad u(t) = W_{B,2} \left(\frac{f_{\partial}(t)}{e_{\partial}(t)}\right);$$

$$y(t) = W_C \left(\frac{f_{\partial}(t)}{e_{\partial}(t)}\right).$$

the transfer function is found by solving for given $u_0 \in \mathbb{R}^m$, $s \in \mathbb{C}$

$$\frac{\partial x_0(\zeta)e^{st}}{\partial t} = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta)x_0(\zeta)e^{st}\right];$$

$$0 = W_{B,1} \begin{pmatrix} f_{\partial,0}e^{st} \\ e_{\partial,0}e^{st} \end{pmatrix}; \qquad u_0 e^{st} = W_{B,2} \begin{pmatrix} f_{\partial,0}e^{st} \\ e_{\partial,0}e^{st} \end{pmatrix};$$

$$y_0 e^{st} = W_C \begin{pmatrix} f_{\partial,0}e^{st} \\ e_{\partial,0}e^{st} \end{pmatrix}.$$

This is the same as solving

$$sx_{0}(\zeta) = \left(P_{1}\frac{d}{d\zeta} + P_{0}\right) \left[\mathcal{H}(\zeta)x_{0}(\zeta)\right];$$

$$0 = W_{B,1}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right); \qquad u_{0} = W_{B,2}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right);$$

$$y_{0} = W_{C}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right).$$

This is the same as solving

$$sx_{0}(\zeta) = \left(P_{1}\frac{d}{d\zeta} + P_{0}\right) \left[\mathcal{H}(\zeta)x_{0}(\zeta)\right];$$

$$0 = W_{B,1}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right); \qquad u_{0} = W_{B,2}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right);$$

$$y_{0} = W_{C}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right).$$

This is almost always impossible.

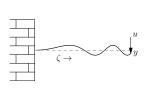
This is the same as solving

$$sx_{0}(\zeta) = \left(P_{1}\frac{d}{d\zeta} + P_{0}\right) \left[\mathcal{H}(\zeta)x_{0}(\zeta)\right];$$

$$0 = W_{B,1}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right); \qquad u_{0} = W_{B,2}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right);$$

$$y_{0} = W_{C}\left(\begin{smallmatrix} f_{\partial,0} \\ e_{\partial,0} \end{smallmatrix}\right).$$

This is almost always impossible. However, the balance equation can give properties of the transfer function G(s).



$$\begin{split} \frac{\partial^2 w}{\partial t^2}(\zeta,t) &= \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right] \\ \frac{\partial w}{\partial t}(0,t) &= 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell,t) = u(t) \\ \frac{\partial w}{\partial t}(\ell,t) &= y(t). \end{split}$$

$$\bigvee_{\zeta \to 0}^{u} y$$

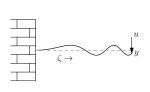
$$\begin{split} \frac{\partial^2 w}{\partial t^2}(\zeta,t) &= \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right] \\ \frac{\partial w}{\partial t}(0,t) &= 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell,t) = u(t) \\ \frac{\partial w}{\partial t}(\ell,t) &= y(t). \end{split}$$

We have, see before,

$$\dot{H}(t) = f_{\partial}(t)e_{\partial}(t)$$

$$= T(\ell)\frac{\partial w}{\partial \zeta}(\ell, t)\frac{\partial w}{\partial t}(\ell, t) - T(0)\frac{\partial w}{\partial \zeta}(0, t)\frac{\partial w}{\partial t}(0, t)$$

$$= u(t)y(t).$$



$$\begin{split} \frac{\partial^2 w}{\partial t^2}(\zeta,t) &= \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right] \\ \frac{\partial w}{\partial t}(0,t) &= 0, \quad T(\ell) \frac{\partial w}{\partial \zeta}(\ell,t) = u(t) \\ \frac{\partial w}{\partial t}(\ell,t) &= y(t). \end{split}$$

We have, see before,

$$\begin{split} \dot{H}(t) &= f_{\partial}(t)e_{\partial}(t) \\ &= T(\ell)\frac{\partial w}{\partial \zeta}(\ell,t)\frac{\partial w}{\partial t}(\ell,t) - T(0)\frac{\partial w}{\partial \zeta}(0,t)\frac{\partial w}{\partial t}(0,t) \\ &= u(t)y(t). \end{split}$$

Since $H(t) = \langle x(t), \mathcal{H}x(t) \rangle$, we find

For every solution of this controlled and observed vibrating string

$$\dot{H}(t) = \frac{d}{dt} \langle x(t), \mathcal{H}x(t) \rangle = u(t)y(t).$$

For every solution of this controlled and observed vibrating string

$$\dot{H}(t) = \frac{d}{dt} \langle x(t), \mathcal{H}x(t) \rangle = u(t)y(t).$$

Substituting the exponential solution, we have

$$\dot{H}(t) = \frac{d}{dt} \langle x_0 e^{st}, \mathcal{H} x_0 e^{st} \rangle = u_0 e^{st} y_0 e^{st}.$$

For every solution of this controlled and observed vibrating string

$$\dot{H}(t) = \frac{d}{dt} \langle x(t), \mathcal{H}x(t) \rangle = u(t)y(t).$$

Substituting the exponential solution, we have

$$\dot{H}(t) = \frac{d}{dt} \langle x_0 e^{st}, \mathcal{H} x_0 e^{st} \rangle = u_0 e^{st} y_0 e^{st}.$$

$$2s\langle x_0e^{st}, \mathcal{H}x_0e^{st}\rangle = u_0e^{st}y_0e^{st} \Leftrightarrow$$

$$2s\langle x_0, \mathcal{H}x_0\rangle = u_0y_0 = u_0G(s)u_0 = G(s)u_0^2.$$

For every solution of this controlled and observed vibrating string

$$\dot{H}(t) = \frac{d}{dt} \langle x(t), \mathcal{H}x(t) \rangle = u(t)y(t).$$

Substituting the exponential solution, we have

$$\dot{H}(t) = \frac{d}{dt} \langle x_0 e^{st}, \mathcal{H} x_0 e^{st} \rangle = u_0 e^{st} y_0 e^{st}.$$

$$2s\langle x_0e^{st}, \mathcal{H}x_0e^{st}\rangle = u_0e^{st}y_0e^{st} \Leftrightarrow 2s\langle x_0, \mathcal{H}x_0\rangle = u_0y_0 = u_0G(s)u_0 = G(s)u_0^2.$$

Since $\langle x_0, \mathcal{H}x_0 \rangle \geq 0$, we find G(s) > 0 for s > 0.

For every solution of this controlled and observed vibrating string

$$\dot{H}(t) = \frac{d}{dt}\langle x(t), \mathcal{H}x(t)\rangle = u(t)y(t).$$

Substituting the exponential solution, we have

$$\dot{H}(t) = \frac{d}{dt} \langle x_0 e^{st}, \mathcal{H} x_0 e^{st} \rangle = u_0 e^{st} y_0 e^{st}.$$

$$2s\langle x_0e^{st}, \mathcal{H}x_0e^{st}\rangle = u_0e^{st}y_0e^{st} \Leftrightarrow 2s\langle x_0, \mathcal{H}x_0\rangle = u_0y_0 = u_0G(s)u_0 = G(s)u_0^2.$$

Since $\langle x_0, \mathcal{H}x_0 \rangle \geq 0$, we find G(s) > 0 for s > 0. G is "positive real".

C'est tout