Port Hamiltonian systems from analysis to
numerics

Hans Zwart

University of Twente and Eindhoven University of Technology, The Netherlands

October 8, 2025



Introduction to lecturer and material

» The lecturer



Introduction to lecturer and material

» The lecturer

What will we cover?
1. Dirac structures on finite-dimensional spaces.
1.1 General definition and properties
1.2 Defining continuous- and discrete-time systems via a Dirac
structure; ODE's, DAE's
2. Dirac structures on infinite-dimensional spaces.

2.1 Gently introduction
2.2 Class of Dirac structures
2.3 Link to operators and PDE's.

3. Restricting a Dirac structure on infinite-dimensional spaces to
finite-dimensional space (numerics).
4. Existence of solution of pH-PDE's.

4.1 Homogeneous
4.2 Inhomogeneous
4.3 Transfer functions
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Dirac structures, general

Let £ and F be real (complex) two linear spaces with a bilinear
product
(f|e) eR (or C).

We assume that this product is non-degenerated, that is

(fle)=0 VYee&= f=0,
(fley=0 YfeF=e=0.



Dirac structures, general

Let £ and F be real (complex) two linear spaces with a bilinear

product
(fle)eR (or C).

We assume that this product is non-degenerated, that is

(fle)=0 VYee&= f=0,
(fley=0 YfeF=e=0.

& is called the effort space and F is the flow space. The bond
space B is defined as F x &.
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Dirac structures, general
On the bond space B = F x £ we define the symmetrised pairing

<<£> ’ <£Z) >B = (faler)+ (fi]ez).

For V' C B we define

v { () em (()-(4)), o (5) v}

Definition
The linear subspace D of B is a Dirac structure if D+ = D.



Dirac structures, general properties

If D is a Dirac structure, then

(f | €) =0 for all <f> €D.

e

This has (may have) the interpretation of power conservation, see
later.



Dirac structures, finite-dimensional

For finite-dimensional spaces, the following gives a very useful
characterisation of a Dirac structure.

Lemma
For F = & = R" with
(fley=fTe
we have that D is a Dirac structure if and only if there exists two
n X n matrices F' and E, such that
1. D =ran (g),
2. The matrix (£) has full rank (rank equals n);

3. FTE+ETF =0, or in other words ' E is skew-adjoint
(anti-symmetric).



Dirac structures, finite-dimensional

For finite-dimensional spaces, the following gives a very useful
characterisation of a Dirac structure.

Lemma
For F = & = R" with
(fley=fTe
we have that D is a Dirac structure if and only if there exists two
n X n matrices F' and E, such that
1. D =ran (g),
2. The matrix (£) has full rank (rank equals n);

3. FTE+ETF =0, or in other words ' E is skew-adjoint
(anti-symmetric).

Question Formulate a similar result if (f | ¢) = f'Qe. Conditions

on Q7



Dirac structures, finite-dimensional

Proof of Lemma
Assume that D C R™ x R" is a Dirac structure. Then
P It is a linear subspace, so there exist matrices F' and E of size
(n x m) such that D =ran () and (£) is of full rank (rank
equals m).



Dirac structures, finite-dimensional

Proof of Lemma
Assume that D C R™ x R" is a Dirac structure. Then

P It is a linear subspace, so there exist matrices F' and E of size
(n x m) such that D =ran () and (£) is of full rank (rank
equals m).

» The relation (gj;) 1 ran (g) is a linear equation with 2n
unknown and m conditions. Hence the dimension of the
solution set is 2n — m-dimensional. However, since the
solution set equals D we have 2n — m = m. Thus m =n.



Dirac structures, finite-dimensional

Proof of Lemma
Assume that D C R™ x R" is a Dirac structure. Then

P It is a linear subspace, so there exist matrices F' and E of size
(n x m) such that D =ran () and (£) is of full rank (rank
equals m).

» The relation (gj;) 1 ran (g) is a linear equation with 2n
unknown and m conditions. Hence the dimension of the
solution set is 2n — m-dimensional. However, since the
solution set equals D we have 2n — m = m. Thus m =n.

» The equality (f | ) = 0 is equivalent to /" FT E¢ = 0 for all
(eR" Thus (" [FTE+ ETF|¢=0. Since F'TE+E"Fis
symmetric, we conclude that F'E+E"F=0.



Dirac structures, finite-dimensional

Proof of Lemma, continued.
Let D = ran (g) with (g) a 2n X n matrix of rank n, and with
FTE+ ETF = 0. We have to show that D is a Dirac structure.

> For ({2) € D we have for any (/) € D that

<<£> ’ <£§> >B = (fale)+(file2)

= (o F'El + 0 FTEly
=y FTEl + 0, ETFl, = 0.

Thus ({2) € D+, and so D C D+,



Dirac structures, finite-dimensional

Proof of Lemma, continued.

Let D = ran (g) with (g) a 2n X n matrix of rank n, and with
FTE+ ETF = 0. We have to show that D is a Dirac structure.

> For ({2) € D we have for any (/) € D that

<<£> ’ <£§> >B = (fale)+(file2)

= (o F'El + 0 FTEly
=y FTEl + 0, ETFl, = 0.

Thus ({2) € D+, and so D C D+,

» By construction dim(D+) = 2n — n (dimension space minus
number of conditions) = n = dim(D).
Combined with D C D+, we find that D = D+.



Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., 7 = & = R™ with
(fe)=fTe.

We have seen that every Dirac structure can be written as

D =ran (g) with (g) a 2n x n matrix of rank n, and with
FTE 4+ ETF =0. This is known as the image representation.
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FTE 4+ ETF =0. This is known as the image representation.
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the above condition on E, F. Then D has the kernel representation

D=ker (E'" FT).



Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., 7 = & = R™ with
(fe)=fTe.

We have seen that every Dirac structure can be written as

D =ran (g) with (g) a 2n x n matrix of rank n, and with
FTE 4+ ETF =0. This is known as the image representation.

Lemma
Let the Dirac structure on R™ x R™ be given as D = ran ( L) with
the above condition on E, F. Then D has the kernel representation

D=ker (E'" FT).

Question Under which condition(s) is D = ker (E1 F1) a Dirac
structure? Furthermore, what is its image representation?



Dirac structures, finite-dimensional

Proof of the Lemma
For (/) € D we have

(ET FT) ({;) =(E" FT) (Z) £ =0.



Dirac structures, finite-dimensional

Proof of the Lemma
For (/) € D we have

(ET FT) <£> =(E" FT) (Z) £ =0.

Hence D C ker (E—r FT).
By checking dimensions, we find that these sets are equal.



Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., F = £ = R" with

(f | e) = fTe. We have the following alternative characterisation
of a Dirac structure.

Lemma

D =ran () is a Dirac structure if and only if there exists a

unitary matrix © such that D = ran ( /115 ).
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(f | e) = fTe. We have the following alternative characterisation
of a Dirac structure.

Lemma
D =ran () is a Dirac structure if and only if there exists a

unitary matrix © such that D = ran ( /115 ).

Proof: Using that FTE + ETF = 0, we find that

(E+F)(E+F)=(E-FTE-F). (%)



Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., F = & = R" with
(f | e) = fTe. We have the following alternative characterisation
of a Dirac structure.

Lemma
D =ran () is a Dirac structure if and only if there exists a

unitary matrix © such that D = ran ( /115 ).

Proof: Using that FTE + ETF = 0, we find that
(E+ P (E+F)=(E-F)T(E-F). (%

Soif (E— F)v =0, then (E+ F)v =0, and thus Ev = Fv = 0.
Since (g) has full rank, we find v = 0. Thus E — F' is invertible.
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We assume the finite-dimensional case, i.e., F = & = R" with
(f | e) = fTe. We have the following alternative characterisation
of a Dirac structure.

Lemma
D =ran () is a Dirac structure if and only if there exists a

unitary matrix © such that D = ran ( /115 ).

Proof: Using that FTE + ETF = 0, we find that
(E+ P (E+F)=(E-F)T(E-F). (%

Soif (E— F)v =0, then (E+ F)v =0, and thus Ev = Fv = 0.
Since (g) has full rank, we find v = 0. Thus E — F' is invertible.
Define © = (E + F)(E — F)™1, then (x) implies that © is unitary.



Dirac structures, finite-dimensional

We assume the finite-dimensional case, i.e., F = & = R" with
(f | e) = fTe. We have the following alternative characterisation
of a Dirac structure.

Lemma
D =ran () is a Dirac structure if and only if there exists a

unitary matrix © such that D = ran ( /115 ).

Proof: Using that FTE + ETF = 0, we find that
(E+ P (E+F)=(E-F)T(E-F). (%

Soif (E— F)v =0, then (E+ F)v =0, and thus Ev = Fv = 0.
Since (g) has full rank, we find v = 0. Thus E — F' is invertible.
Define © = (E + F)(E — F)™1, then (x) implies that © is unitary.

Now D =ran (L) :ran<§§g:gj) :ran(}ﬁe@)- .
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Dirac structures, dynamical interpretation

We assume F = & = R™ with (f | e) = fe.
Example
If we take F = J, E =1, with JT = —.J, then by the above

D:ker(fr JT):ker(I —J)

defines a Dirac structure.



Dirac structures, dynamical interpretation

We assume F = & = R™ with (f | e) = fe.

Example
If we take F = J, E =1, with JT = —.J, then by the above

D:ker(fr JT):ker(I —J)

defines a Dirac structure.

So the solutions of #(t) = JHx(t) (H =H") can be seen as
()= <7f£2)> € D and satisfy

G |57O M (0] = o) ol = e 0.

Thus H(t) := Lz(t) "Hz(t) is constant along solutions of the
differential equation.
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Note that we did not need conditions on 7, except from symmetry.
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Choosing H = diag(1, —1) gives an unstable system, Check.
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Note that we did not need conditions on 7, except from symmetry.
Choosing H = diag(1, —1) gives an unstable system, Check.
The previous example can be extended to non-linear o.d.e.’s.

Example

Let D = ran (g) with (g) a 2n x n matrix of rank n, and with
FTE=—-E'F.



Dirac structures, dynamical interpretation

Note that we did not need conditions on 7, except from symmetry.
Choosing H = diag(1, —1) gives an unstable system, Check.
The previous example can be extended to non-linear o.d.e.’s.

Example

Let D = ran (g) with (g) a 2n x n matrix of rank n, and with
F'E=—-E'F.

With the C-function H : R™ — R, we define the implicit

differential equation
& (t)
(gGet ) €2

Then along solutions, there holds %H(w(t)) = 0. 0



Dirac structures, dynamical interpretation

Note that the implicit differential equation can be made explicitly

ETi(t) = —FT%—Z(:):(t)).
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Dirac structures, dynamical interpretation

Note that the implicit differential equation can be made explicitly
as oH

ETi(t) = —FT%(:):(t)).
Since E needs not to be invertible, this includes DAE's.
The above differential equation needs not to have solutions (for all
initial conditions). For instance, take E =0 and F' = I, then the
diff. eqn. becomes 0 = —%—g(a:(t)).



Dirac structures, dynamical interpretation

Note that the implicit differential equation can be made explicitly
as
OH
ETi(t) = —FT=——(2(t)).
(1) o ()

Since E needs not to be invertible, this includes DAE's.

The above differential equation needs not to have solutions (for all
initial conditions). For instance, take E =0 and F' = I, then the
diff. eqn. becomes 0 = —%—g(a:(t)).

So a Dirac structure alone does not guarantee existence nor
stability.



Dirac structures, dynamical interpretation

Since there is no time in a Dirac structure, we can choose our time
axis. We assume F =& = R" with (f | e) = fTe.



Dirac structures, dynamical interpretation

Since there is no time in a Dirac structure, we can choose our time
axis. We assume F =& = R" with (f | e) = fTe.

Example
For J € R™ ™ satisfying J' = —J, define the Dirac structure

D = ker (IT JT) = ker (I —J) .



Dirac structures, dynamical interpretation

Since there is no time in a Dirac structure, we can choose our time
axis. We assume F =& = R" with (f | e) = fTe.

Example

For J € R™ ™ satisfying J' = —J, define the Dirac structure
D = ker (IT JT) = ker (I —J) .

So the solutions of z(n + 1) — z(n) = JH [x(n + 1) + z(n)]

(H=H")canbeseenas (/)= (Hﬁ?;ﬂ)_ﬁ@)ﬂ € D and satisfy

z(n+ DI Hz(n+ 1) — z(n)Ha(n) =
[2(n+1) = 2(n)]" Hlz(n+ 1) +2(n))] = 0.

Thus H(n) := 2(n) " Haz(n) is constant along solutions of the
difference equation. O



Dirac structures, dynamical interpretation

Note that if I — JH is invertible, then the implicit difference
equation

z(n+1) —z(n) = JH [z(n + 1) 4+ z(n)]
can be made explicite. Namely, to
z(n+1) =1 - JH) I + JH)z(n).

Question Prove that under the conditions in the example, the
matrix I — JH is invertible.



Dirac structures, dynamical interpretation

In the previous examples of dynamical systems we choose f to be
the change of the state variable x. However, this is not dictated by
the Dirac structure. Other choices are possible.



Dirac structures, dynamical interpretation

Example
We split our effort and flow space, and choose J as

f= (i;),e:(%)w’: <—J}iT2 J(l)g)'

For ¢1 = @(t), e2 = R¢2 and €1 = Hx(t), f = Je becomes

(%) = (5 70) ().



Dirac structures, dynamical interpretation

Example
We split our effort and flow space, and choose J as

¢ Ji J
F=(0) =)= (1%
For ¢1 = @(t), e2 = R¢2 and €1 = Hx(t), f = Je becomes
@)\ _ ( Jin Ji2 Ha(t)
(%) = (5 70) ().
Hence x satisfies (t) = (J11 — Ji2RJ5)Hx(t). So
@(t) " Ha(t) + ¢g Rpo = fle = 0.

When R > 0 this gives dissipation of H(t) = 3z (t) " Ha(t).



Dirac structures, dynamical interpretation

Example
We split our effort and flow space, and choose J as

= (@)= (5 )

For ¢p1 = 2(t), p2 = —y(t), e2 = u(t) and g1 = Hx(t), f = Je

becomes ‘
(50) = (G 5) ()



Dirac structures, dynamical interpretation

Example
We split our effort and flow space, and choose J as

= (@)= (5 )

For ¢p1 = 2(t), p2 = —y(t), e2 = u(t) and g1 = Hx(t), f = Je

becomes ‘
(50) = (G 5) ()

%(t) = Ji1Hx(t) + Bu(t)
y(t) = B  Ha(t) + Jogu(t)

So the system

satisfying (1) "Ha(t) — y(t) "u(t) = fTe = 0.



Dirac structures and port-Hamiltonian systems

Figure: Dirac structure connected to storage, and input, output
The system

i(t) = JuHa(t) + Bu(t)
y(t) = BT Ha(t) + Jyu(t)

is a (standard) example of a port-Hamiltonian system, with
H(t) = 2x(t) "Hz(t) the Hamiltonian and (u,y) the ports.
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On our bond space B = F x £ we have the bilinear relation (f | €).
If we define (for fixed f) the map

lp:E—=Raslile)=(f]e),

then this is a linear map from £ to R. Thus there exists a (unique)
element € € &’ (the algebraic dual of £) such that

(fle) = (e;e)erxe-
Hence we can define the “identification” map
Id: F— & as Id(f) =e.

So F can be interpreted/identified as a subspace of £'. Similarly,
we can interpret £ as a subspace of F.



Intermezzo: Dirac structures and dual spaces

When F and £ are normed, linear spaces, and the bilinear product
satisfies: There exists a m > 0 such that for all f € Fandee &
there holds

[(f 1 e)l < mllf[llle]l-
Then the map

l; : € — R defined as (f(e) := (f | e),

is a continuous/bounded linear map from & to R.



Intermezzo: Dirac structures and dual spaces

When F and £ are normed, linear spaces, and the bilinear product
satisfies: There exists a m > 0 such that for all f € Fandee &
there holds

[(f 1 e)l < mllf[llle]l-
Then the map

l; : € — R defined as (f(e) := (f | e),

is a continuous/bounded linear map from & to R.
Thus there exists a (unique) element € € £* (the topological dual
of &) such that

(f le) = (e, e)exxe.



Intermezzo: Dirac structures and dual spaces

When F and £ are normed, linear spaces, and the bilinear product
satisfies: There exists a m > 0 such that for all f € Fandee &
there holds

[(f 1 e)l < mllf[llle]l-
Then the map

l; : € — R defined as (f(e) := (f | e),

is a continuous/bounded linear map from & to R.
Thus there exists a (unique) element € € £* (the topological dual
of &) such that

(f le) = (e, e)exxe.

So F can be interpreted /identified as a subspace of £*.



Intermezzo: Dirac structures and dual spaces

When F and £ are normed, linear spaces, and the bilinear product
satisfies: There exists a m > 0 such that for all f € Fandee &
there holds

[(f 1 e)l < mllf[llle]l-
Then the map

l; : € — R defined as (f(e) := (f | e),

is a continuous/bounded linear map from & to R.
Thus there exists a (unique) element € € £* (the topological dual
of &) such that

(f le) = (e, e)exxe.

So F can be interpreted /identified as a subspace of £*. Similarly,
we can interpret £ as a subspace of F*.



End of intermezzo
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Dirac structures, infinite-dimensional

We have considered £ and F to be finite-dimensional, i.e., R™.
Other (finite-dimensional) choices are possible, e.g. a tangent
space and co-tangent space (see intermezzo).

Since the dimension is not “present” in the definition of a Dirac
structure, we can take £ and F to be infinite-dimensional.

There are many infinite-dimensional spaces, i.e., function and/or
sequence spaces, and so we take a simpler approach, and try to see
if we can come up with an example in which

() -]

is an infinite-dimensional Dirac structure.
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Classroom question:
If f and e are two (scalar) functions, what would be a logical
choice for (f | e)?
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A choice is

f ) = /Q F(Qe(Q)dc.
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A choice is

For simplicity, we take = [a,b] C R.

Classroom question: Taking this bilinear product, can we think of
an J such that {f = Je} is a Dirac structure?
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<f|e>=/abf(é) 0)d¢ = /Je Q)d¢ = 0.



Dirac structures, infinite-dimensional

Classroom question:
If f and e are two (scalar) functions, what would be a logical

choice for (f | e)?
(e = [ Fe(

A choice is

For simplicity, we take = [a,b] C R.

Classroom question: Taking this bilinear product, can we think of
an J such that {f = Je} is a Dirac structure?

In particular, we need that

<f|e>=/abf(é) 0)d¢ = /Je Q)d¢ = 0.

What about Je = ¢ = 227



Dirac structures, infinite-dimensional

We calculate



Dirac structures, infinite-dimensional

We calculate

<f|e>=/ Q)¢ = /
1

- [} jc( <c>2)d<—§ () — gela)”

So this is only zero when we put (extra) conditions on e.
For instance, e(b) = e(a) =0, or e(b) = e(a), or e(b) = —e(a)



Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

D00:{<f>€]-"x5|f—dC e(a) = Oze(b)}

a Dirac structure?
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b
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Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

D00:{<f>€}"><5|f—dC e(a) = Oze(b)}

a Dirac structure?
Answer: Calculating D&O;

() (E) =0 v () emos

b
[ 1820~ a0l e0ric =0 ve & CHab)
Thus f2(¢) = é2(0)



Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

D00:{<f>€]-"x5|f—dC e(a) = Oze(b)}

a Dirac structure?
Answer: Calculating D&O;

() (E) =0 v () emos

b
[ 1820~ a0l e0ric =0 ve & CHab)

Thus f2(¢) = é2(¢), but No boundary conditions. So Dgy # Doo-



Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

D, ~{ (1) erxels= et et}

a Dirac structure?



Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

Dp:{<f>€fx5|f—dc e(a) = e(b)}

a Dirac structure?
Answer: Calculating Dé leads to (see previous example);
Ve € C'(a,b):

b

= [ 10) - (010G + ea(b)eld) — exfa)e(a)
b

- / [£2(0) — €2(O)] e(Q)dC + [ea(b) — ea(a)]e(a).



Dirac structures, infinite-dimensional

Question:
Given F = C(a,b) and & = C*(a,b). Is

Dp:{<f>€fx5|f—dc e(a) = e(b)}

a Dirac structure?
Answer: Calculating Dé leads to (see previous example);
Ve € C'(a,b):

b

= [ 10) - (010G + ea(b)eld) — exfa)e(a)
b

- / [£2(0) — €2(O)] e(Q)dC + [ea(b) — ea(a)]e(a).

Thus f2(¢) = é2(¢) and ea(b) = e2(a). So Dy =D,



Dirac structures, link to pde’s

So Dy = {(Jé) eFxE|f= g—z,e(a) = e(b)} is a Dirac
structure. As we did in the finite-dimensional case we can link a

differential equation to it, by choosing f = &(t) and e = Hax(t).



Dirac structures, link to pde’s

Son:{(ch) eFxE| fzg—zi,e(a):e(b)} is a Dirac

structure. As we did in the finite-dimensional case we can link a
differential equation to it, by choosing f = @(t) and e = Hx(t).
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Dirac structures, link to pde’s

SO'Dp:{( JEFxE|f=1%e (a):e(b)} is a Dirac
structure. As we did in the finite-dimensional case we can link a
differential equation to it, by choosing f = &(t) and e = Hax(t).
Since e and f depend on ¢ and thus x(t) depends on ( as well, we

now have to write f = %.

(f,e) € Dy is now the same as writing H(-)z(-,t) € C'(a,b) and
0
¢
So a PDE with Boundary Conditions.

The Dirac structure gives (as before) that along solutions we have
t) = %f;x(fat)H(C)x(Cvt)dC is constant.

(Cv) [H(Qz(C, )], Ha)z(a,t) = H(b)x(b,1).
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Dirac structures, link to pde’s

Again we have seen that the Dirac structure implies properties of
the solution of a differential equation, but do we have solutions?
We take H = 1. So our scalar PDE becomes

Oz
¢
The solution of this PDE is

or
E(C’t) = (¢, 1), x(a,t) =x(b,t).

90((, t) = xO,ext(t + C)

with 2 ¢+ the periodic extension of z( (the initial condition).
Even when xp € £ = Ct(a,b), z(t,) € &!

Once more we see that a Dirac structure does not guarantee
existence of solutions. More later.
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Dirac structures, P, class

We have studied Dirac structures for scalar functions, and we can
easily extend it to vector valued functions.
So the bilinear product becomes for f(¢),e(¢) € R", ¢ € [a, b]

b
(f €)= / FOTe(0)dc.

Question
Simplify (f | ¢) when f = Py ¢ with P = P, € R™",
Answer

/ab [Plfjlz(o} T e(¢)d¢ = [e(b)TPle(b) _ €(G)Tple(a) .

N |
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Dirac structures, P, class

So to make V = {f = Plg—z} into a Dirac structure, we have to
add boundary conditions.
Therefor we define boundary flow and effort

()46 7))

Ro

Question: Show that for f = Plg—z + Pye, with P, € R™*",
P = Py, P} = —P,, there holds

(fle)—fgeq=0.

Question: For F = C([a,b]; R™) and € = C([a, b]; R™) define a
Dirac structure around f = Plg—z + Pye. Furthermore, prove that
your candidate Dirac structure is a Dirac structure.
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Dirac structures, P, P class

Question: For F = C([a,b];R™) x R" and & = C*([a, b]; R") x R"
define a Dirac structure around f = Plg—z + Pye. Furthermore,
prove that your candidate Dirac structure is a Dirac structure.

The PDE associated to the above Dirac structure will be
H(-)z(-,t) € C'([a,b];R™) and

Ox 0

15 [H(Q)z(C, )] + P (¢)z(C, 1)

with (in)homogeneous boundary conditions.
The existence problem which we found in the scalar case remains.
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a-(0 ) wa-(s )
Thus

5<x1)_3x_(0 1>0 c 0 e
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CX9
CI1

)



Dirac structures, P, P class

As an example of the P; class we take n = 2, Py = 0,

a-(0 ) wa-(s )
Thus

i ()= 5= (0 o)l 9 = (&)
ot \aa) — ot \1 0)ac|\o ¢)*| T ac \exr )"

For x1 this becomes

9%z 0 [83@1] 0 |:8C$2:| 0 [83:2] B 50?11

a2 ot | ot ac ERR

= Cac

ot

The wave equation.
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Dirac structures, higher spatial dimension.

We have only discussed (potential) infinite-dimensional Dirac
structures in one spatial variable. However, there is no
fundamental reason for that. For instance, consider

v={(}) = (a ) ()]
with © C R, and e; € CH(R), e € CH(RY), etc.

(fle) = /Qeldiv(eg) + eg grad(e;)

:/Qdiv(eleg) :/F(eleg)Tn,

where I' is the boundary of €2 and n is the outward unit normal.
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We have seen that using functions paces, we can define Dirac
structures. Furthermore, we can link these infinite-dimensional
Dirac structures to (partial) differential equations. However, we

have trouble (even in simple cases) to obtain existence of solutions
for these PDE's.



Dirac structures, so far.

We have seen that using functions paces, we can define Dirac
structures. Furthermore, we can link these infinite-dimensional
Dirac structures to (partial) differential equations. However, we
have trouble (even in simple cases) to obtain existence of solutions
for these PDE's.

To solve this matter we take a more abstract/functional analytic
point of view.
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Dirac structure, operators

For finite-dimensional spaces we had that {f = Je} defines a
Dirac structure if and only if JT = —J. How for
infinite-dimensional spaces?

Let X be a Hilbert space with inner product (-,-), and let

Q@ : dom(Q) C X — X be a densely defined linear operator.
Definition

The adjoint, Q*, of @ is defined as follows

dom(Q*) ={z€ X | Jw € X s.t. (Qz,2) = (z,w),Vzr € dom(Q)}

For z € dom(Q*), we define Q*(z) = w. 0

Definition
> () is skew-adjoint when Q* = —Q.
> () is self-adjoint when Q* = Q).



Dirac structure, operators

Theorem

Let F = £ = X, with X a Hilbert space, and let (f | e) = (f,e)x.
Then

D={(l)eFxE&|f=Jeeecdom(J])}

is a Dirac structure if and only if J is skew-adjoint.
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Dirac structure, operators

Theorem
Let F = & = X, with X a Hilbert space, and let (f | e) = (f,e)x.
Then

D={(f)e Fx&|f=Jeeecdom(J)}

is a Dirac structure if and only if J is skew-adjoint.
Proof: Calculating D*;

((5)1(5))=0 ¥() v

(fo,e)x + (Je,ea)x =0 Ve € dom(J).
So ey € dOHl(J*) and f2 = —J*(62>. O
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de
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e

ela) = el0)

is a Dirac structure. However,



Dirac structure, revisited

We have seen that

D, — {(J;) € C(a,b) x CMab) | f = Zz,e(a) :e(b)}

is a Dirac structure. However,
> F#E;
» F nor £ is a Hilbert space,
but



Dirac structure, revisited

We have seen that

de
dg

e

D, = {<f> € C(a,b) x CY(a,b) | f = -, e(a) :e(b)}

is a Dirac structure. However,
> F#E;
» F nor £ is a Hilbert space,
but f = Z—Z looks very similar to f = Je. Furthermore, the bilinear

product ff f(€)e(¢)dC looks very similar to an inner product.



Dirac structure, revisited

We have seen that

de
dg

e

D, = {<f> € C(a,b) x CY(a,b) | f = -, e(a) :e(b)}

is a Dirac structure. However,
> F#E;
» F nor £ is a Hilbert space,
but f = Z—Z looks very similar to f = Je. Furthermore, the bilinear

product ff f(€)e(¢)dC looks very similar to an inner product.
Namely, the inner product of L?(a,b)-functions.



Dirac structure, revisited

So we take

» F =& = L?(a,b) all measurable, square integrable,
real-valued, scalar functions on the interval (a, b);

> Je= Z—Z with dom(.J) = {e € H'(a,b) | e(a) = e(b)}.



Dirac structure, revisited

So we take

» F =& = L?(a,b) all measurable, square integrable,
real-valued, scalar functions on the interval (a, b);

> Je= Z—Z with dom(.J) = {e € H'(a,b) | e(a) = e(b)}.
Then J is skew-adjoint, and thus

de

Dyer — {(£> € 13(ab) x H'(@b) | f = F.ela) = e(b)}

is a Dirac structure.



Dirac structures, from infinite- to finite-dimensional

Given an infinite-dimensional Dirac structure of the form

b {(!)erneismsl

we can easily obtain a finite-dimensional Dirac structure. Therefor

we choose e1,--- ,en (independent) elements of £, and define
fi =Jeg, k=1,--- N. Next define
» En :=span{e, - - ,en} C¢E;

> ]:N ::Span{fb"' 7fN} Cc F;
» For (f,e) € Fy x En the bilinear product is defined as

(fleyw:=(f]e).
> DN:—{<f>€.7:N><€N|f—Je}CD

e

Question: Prove that Dy is a Dirac structure in Fy x Ey if and
only if dim Fy = N.



Dirac structures, from infinite- to finite-dimensional

As an example we consider

de

Dyer — {({;) € L2(0.1) x H(0.1) | f = §F.e0) = 6(1)}.

We choose N € N and define h = N~!. Furthermore (;, :=k * h,
k=0,1,---,N. With this we define “hat”functions

N(C—Ce-1) ¢ € [Cr-1,Ck];
ex(C) = S N(Geg1 —¢) € € Gy Chtr]s

0 elsewhere.

EN Ck EN

0 h Ger G Cen 1

Figure: The hat-functions, e



Dirac structures, from infinite- to finite-dimensional

From fi. = Jex = %, we find

N ¢€ (Ch1,Ck);
fe(Q) =4 —-N (€ (G Chr1);

0 elsewhere.
N Ji In LN
| |
T L T T .
h C‘k | 1
| |
_N,% | I _NA
In Ir

Figure: The step-functions, fj



Dirac structures, from infinite- to finite-dimensional

From fi. = Jex = %, we find

N ¢€ (Ch1,Ck);
fe(Q) =4 —-N (€ (G Chr1);

0 elsewhere.
N Ji Iy gy
L |
T ! t T
h G 1
N [ —NA
In Ir

Figure: The step-functions, fj

It is easy to show that dim (spany_; .. x{fx}) = N, and thus
Dy ={(f) € Fn xEn | f = Je} is a Dirac structure
(finite-dimensional).
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Since dim &y = dim Fy = N, we can define an equivalent Dirac
structure on RN x RV,
Fore € Ey and f € Fy given as e(() = Ei\;l arer(¢) and

f(¢) = chvzl bi f1(C), respectively, we define
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Dirac structures, from infinite- to finite-dimensional

Since dim &y = dim Fy = N, we can define an equivalent Dirac
structure on RN x RV,

Fore € Ey and f € Fy given as e(() = Ei\;l arer(¢) and

f(¢) = chvzl bi f1(C), respectively, we define

al bl

oL
I
—hy
I

an by

By definition, fi = Jeg. Thus the Dirac structure, becomes
DN:{(g) eRNxRN|F:é}.

Question: Something weird and/or wrong?
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Dirac structures, from infinite- to finite-dimensional

A straightforward calculation gives

—3N? k=(+1

(fuley=4¢ IN? k=t(-1

0 elsewhere

So
(fley#££T8

but
(f|e)=fTQé

with Q. = (fx | er). (see also Question on Page 7)
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In this part we go into existence theory for linear PDE's. We will
focus on those on a one-dimensional spatial domain, and will study
homogeneous and inhomogeneous equations.



Introduction and notation

In this part we go into existence theory for linear PDE's. We will
focus on those on a one-dimensional spatial domain, and will study
homogeneous and inhomogeneous equations.

Some notation:

» In this part we denote the one dimensional spatial domain by
[0, ¢]. Hence we shifted it by a. However, we have kept units
(which can be lost when choosing the interval [0, 1]).

» The norm on the inner Hilbert space X we denote by || - || and
the inner product by (-, -)



Solutions of PDE's

To introduce and motivate solutions of a PDE, we consider the
following simple PDE with ¢ € [0,¢] and t > 0

ow

ow w
E(Cvt) = aC (Cat)7 w(ea t) = Oa ’LU(C,O) = wO(C)
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We call a function w : [0,¢] x [0,00) — R a classical solution, if w
is continuously differentiable, and for all t > 0, ¢ € [0, /] the
differential equation, initial and boundary condition are satisfied.
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Question: Determine the classical solution for wg(¢) = sin(w(/¢).



Solutions of PDE's

To introduce and motivate solutions of a PDE, we consider the
following simple PDE with ¢ € [0,¢] and t > 0

ow ow
E(Cvt) - aic(Cat% w(ea t) - Oa ’LU(C,O) - wO(C)
We call a function w : [0,¢] x [0,00) — R a classical solution, if w
is continuously differentiable, and for all t > 0, ¢ € [0, /] the

differential equation, initial and boundary condition are satisfied.
Question: Determine the classical solution for wg(¢) = sin(w(/¢).

History has shown that this concept is too restrictive, and that a
weaker concept of a solution was needed. We illustrate this for the
same PDE.
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domain.



Solutions of PDE's

We take a smooth test function ¢({) and integrate over the spatial
domain.

¢ w ¢ w
[ o5 coic= [ o FEcnic @oe)
l
(it by pars) = [o(QulC.0h — [ dCu(c.iC

E .
(be) = —d(Ouw(0,1) - /O HOw(C 1)

If we take test functions satisfying ¢(0) = 0, we find



Solutions of PDE's

/<z> w(C, 1)d¢ = /¢> 90 ¢ 1yd¢ = — /¢



Solutions of PDE's

o [ soucnac= [ o020 cnac=- [ s nac

Integrate this expression with respect to time from ¢t = 0 to t = t;

/¢ w(C,t)dC ~ /¢ =—/0t"/0€¢<c>w<< Hd¢
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You see there are no derivatives of w taken anymore.
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above equation is satisfied for all smooth test functions ¢

satisfying ¢(0) =




Solutions of PDE's

o [ soucnac= [ o020 cnac=- [ s nac

Integrate this expression with respect to time from ¢t = 0 to t = t;

/ B(Q)w(C, ty)dC — / H(Cw(C,0)d¢ = - /0 N /0 “HOw(C. e,

You see there are no derivatives of w taken anymore.

Now we call w((,t) a weak or mild solution of the PDE if the
above equation is satisfied for all smooth test functions ¢
satisfying ¢(0) =

The set of initial conditions must be chosen. With this you also
choose the set in which w(-,ts) will be. We denote this (linear)
space by X.




Weak and classical solutions of PDE'’s

Question For a given wg € X = L?(0,¢) show that

0 elsewhere

w(C.) = {wo(C+t) ¢+telo,

is the weak solution of

(C D=22(G1), wit,) =0, w(¢,0) =wo(C):

C
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Weak and classical solutions of PDE'’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.

We will now study when our PDE has a weak solution.

Note there is a difference between knowing the existence of a
solution and having the form /expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.

We concentrate on solutions satisfying the additional property that

lz(@®)|] < |lzoll V>0 (contraction),

where || - || denotes the norm of the state space X.

Since our PDE's are linear, the above inequality implies that the
solution with depend continuously on the initial condition, i.e., for
allt >0

|x1(t) — 22(t)|| < ||z10 —220|| (continuity w.r.t. initial condition).
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Intermezzo: Strongly continuous semigroups

Consider a linear, time invariant differential equation on the space
X. Assume that for every zp € X there exists a (weak) solution
denoted by x(t). Furthermore, assume that this solution depends
continuously on the initial condition.



Intermezzo: Strongly continuous semigroups

Consider a linear, time invariant differential equation on the space
X. Assume that for every zp € X there exists a (weak) solution
denoted by x(t). Furthermore, assume that this solution depends
continuously on the initial condition.

Define for t > 0 the map T'(t) : X — X as

T(t)xo = z(t).
Then it has the following properties:
> T(O) I;
T(t1 + to) = T(t1)T(t2), t1,t2, € [0,00), time-invariance;
T'(t) is for every t > 0 a linear and bounded operator, i.e.,
(

Tt) L(X).



Intermezzo: Strongly continuous semigroups

Consider a linear, time invariant differential equation on the space
X. Assume that for every zp € X there exists a (weak) solution
denoted by x(t). Furthermore, assume that this solution depends
continuously on the initial condition.

Define for t > 0 the map T'(t) : X — X as

T(t)xo = z(t).
Then it has the following properties:
> T7(0) =1I,
> T(tl + tz) = T(tl)T(tz), t1,12, € [0, OO), time-invariance;
» T(t) is for every t > 0 a linear and bounded operator, i.e.,
T(t) € L(X).
If additionally the following holds

ltii%l |T(t)zg — xol| =0, continuity at t =0,

then (T'(t)),~ is a strongly continuous semigroup, or short
Co-semigroup.
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Intermezzo: Strongly continuous semigroups, examples

It is not hard to show that on X = R” the exponential e”? is a
Co-semigroup.
Question Show that the solution map of the PDE

ow

¢ (Cat)7 w(ﬁ, t) =0, w(<70) = wO(C)'

ow
E(Cv t) =

is a Cp-semigroup.
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Since T'(t) came from xz(t) via x(t) = T(t)xo, we have

() = lim x(t+ h) — z(t) — lim T(t+ h)xg — T(t):z:O.
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Intermezzo: Strongly continuous semigroups

Since T'(t) came from xz(t) via x(t) = T(t)xo, we have

() = lim x(t+ h) — z(t) — lim T(t+ h)xg — T(t)x().
h10 h h10 h

Thus by the semigroup and boundedness property,

o TOT(h)xe — T()xg _ T(h)xo—a
i(t) = lim ];) O — 1) limn %

We define (whenever it exists)

. T(h)xog —xo
Azxg = lim —2—
Y050 h

With this we obtain the (abstract) differential equation

i(t) = T(t)Azg = AT(t)zo = Ax(t).
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For the linear operator A we denote its domain by dom(A).
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Given now a linear operator A : dom(A4) C X — X, under which
conditions does the abstract differential equation

x(t) = Az(t), x(0)=xo

have solution, i.e., when do we have the existence of a
Co-semigroup?



Intermezzo: Abstract differential equation

For the linear operator A we denote its domain by dom(A).
Given now a linear operator A : dom(A4) C X — X, under which
conditions does the abstract differential equation

x(t) = Az(t), x(0)=xo

have solution, i.e., when do we have the existence of a
Co-semigroup?

For X being a Hilbert space (from now on standard assumption)
we have the following:




Intermezzo: Abstract differential equation

Theorem
If A is skew-adjoint, i.e., A* = —A, then A generates a
Co-semigroup satisfying
> |T(t)|| =1 forall t > 0;
» T'(t) can be extended to the whole real time, and
T(tl + tg) = T(tl)T(tg), ti,to € R and ||T(t)H =1 for all
t € R, unitary group.
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Theorem
If A is skew-adjoint, i.e., A* = —A, then A generates a
Co-semigroup satisfying
> | T(t)|| =1 forall t > 0;
» T'(t) can be extended to the whole real time, and
T(ty +t2) = T(t1)T(t2), t1,t2 € R and || T(t)|| =1 for all
t € R, unitary group.

Theorem

If A is dissipative, i.e., (Az,z) < 0 Vz € dom(A), and if A* is
dissipative, then A generates a Cy-semigroup satisfying || T (t)|| < 1
for all t > 0, contraction semigroup.




Intermezzo: Abstract differential equation

Theorem
If A is skew-adjoint, i.e., A* = —A, then A generates a
Co-semigroup satisfying
> | T(t)|| =1 forall t > 0;
» T'(t) can be extended to the whole real time, and
T(ty +t2) = T(t1)T(t2), t1,t2 € R and || T(t)|| =1 for all
t € R, unitary group.

Theorem

If A is dissipative, i.e., (Az,z) < 0 Vz € dom(A), and if A* is
dissipative, then A generates a Cy-semigroup satisfying || T (t)|| < 1
for all t > 0, contraction semigroup.

For zy € dom(A) the function x(t) = T'(t)xo a classical solution.
For zg € X it is a weak solution.



Intermezzo: Useful lemma

Let X be a Hilbert space with inner product (-,-) and let
Q € L(X) satisfying Q = Q*, and (z,Qx) > m|z||?, Vo € X.

Question: Prove that if .J is skew-adjoint in X, then JQ is
skew-adjoint in the inner product (z, 2)g = (z, Qz).



End of intermezzo
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We have now the right basis in operator theory/functional analysis
and PDE theory to study the existence of solutions for a PDE with
an underlying Dirac structure. We had:

Theorem

Let F = & = X, with X a Hilbert space, and let (f | e) = (f,e)x.
Then

D={(l)eFxE&|f=Jeecdom(J])}

is a Dirac structure if and only if J is skew-adjoint.



Introduction

We have now the right basis in operator theory/functional analysis
and PDE theory to study the existence of solutions for a PDE with
an underlying Dirac structure. We had:

Theorem

Let F = & = X, with X a Hilbert space, and let (f | e) = (f,e)x.
Then

D={(l)eFxE&|f=Jeecdom(J])}
is a Dirac structure if and only if J is skew-adjoint.

Furthermore: a skew-adjoint J generates a Cy-semigroup (unitary
group) on the Hilbert space X.



Dirac and ADE

Let J be skew-adjoint on the Hilbert space X with inner product
(+,+) and consider the abstract differential equation, given as

Question: Does the corresponding abstract differential equation
&(t) = JHx(t), z(0) = xg

possess a (unique) solution for all g € X7
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Dirac and ADE

Let J be skew-adjoint on the Hilbert space X with inner product
(+,+) and consider the abstract differential equation, given as

Question: Does the corresponding abstract differential equation
&(t) = JHx(t), z(0) = xg

possess a (unique) solution for all g € X7

Yes, but we need that mI < H < M1 for some m, M > 0.

If 3(z, Hx) has the meaning “energy”, then the solution exists for
every initial condition with finite energy, and the energy stays
constant along the solution.




Dirac and PDE

For our class of PDE's on the spatial interval [0, /]

0

o () = Pug (MG, )] + PRH(C)s(c. ),

we have the associated Dirac structure
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Dirac and PDE

For our class of PDE's on the spatial interval [0, /]

0

o () = Pug (MG, )] + PRH(C)s(c. ),

we have the associated Dirac structure

— — —_ — — e(b
T f—Fl ZC—FFoe,(e]@)_T(ll P1)(eg)))
h)
0

We take F = & = L?(0,¢), {fle) = (f,e), and in D we restrict e
to H(0,7).



Dirac and PDE

D
fzpl%JrPnﬁ

fa ) _ e(f)
( f’i ) = ( e(0)




Dirac and PDE

D
fzplfj*erPnﬁ

fo\ _ e(t)
(&)-m(:0

We connect it at one end to a Hamiltonian, and on the other end
to another Dirac structure.

- D
f:PﬁferPo@

Dbc

£ o)

fo ) _ e(l)
ep ) =l ( e(0)




Dirac and PDE

The PDE associated to the connection

is given as

9
15’4

‘?;(g,t) — P H(O)2(¢, 0] + PyH(O)2(C, 1),

with boundary condition

(gg) € ran (g) .



Dirac and PDE

Theorem (Le Gorrec, Maschke & Z. '05)
Assume that Py = —P,, P, = P|', Py invertible and

0<mlI <H(C) <MI, for all ¢ € [0,¢]. Then the PDE associated
to the connection

has for every xo € X a unique weak solution satisfying
(@)l = [lzolln, t € R,

Or equivalently, the associated A generates a unitary group on
L2([0,£]; R™) with energy norm |z||3, = (z, Hz).



Dirac and PDE

Question: How many boundary conditions does the previous PDE
have?
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with © unitary.



Dirac and PDE

Question: How many boundary conditions does the previous PDE

have?
Question: Define the Hamiltonian H(t) := 3(x(t), Hz(t)). What
do you know about H(t)?

Note that the boundary conditions can be written in the more

familiar form
< 3) e ker (BT FT),
€y
or
(I+e I1-0) (f8> =0,
€s

with © unitary.
With this, the previous theorem can be reformulated.



Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. '05, Jacob & 7 '11)
Given our port-Hamiltonian partial differential equation

= (P + B) O 0)

with the properties on Py, P, and H, and boundary conditions
Wg (écg) =0, Wp an x 2n-matrix. Then the following are
equivalent:
» The PDE has for every xog € X a unique weak solution
satisfying ||z(t)|ln = [[zolln, t € R,
» Wpgy can be written as S (I +0 I- @) with S invertible
and © unitary;
» Wy has full rank, and H(0) = 0 for all (smooth) initial
conditions satisfying the boundary conditions.



Example

As our (running) example we consider the vibrating string

w(¢. 1)t

0%w 1 0
o0 =g ac

With p the mass density, and 7" Young's modulus.

ow
¢

05|




Example

As our (running) example we consider the vibrating string

w(¢. 1)t

O%w 1 0 ow
W(Cat) PGES [T(C)ac(Qﬂ} :

With p the mass density, and 7" Young's modulus.

0 0
We choose z; := pa—qf (the momentum), zq := 7@ (the strain),
and write the PDE as

ai(ii) (C’”:@i <p(;o T?o) #&t)

N————
=P =H
———

J
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Our vibrating string

is fixed at ¢ = 0 and moves freely at { = £.



Boundary conditions and power balance

Our vibrating string

w(¢.t) T

0w 1 0
S0 = s [TO%EE).

is fixed at ¢=0and moves freely at ( = £. In the state variables
z = pe 5 and xg = 84 this gives the (boundary) conditions

z1(0,t) = 0 and z2(¢,t) = 0.



Boundary conditions and power balance

Our vibrating string

w(¢.t) T

0w 1 0
S0 = s [TO%EE).

is fixed at ¢=0and moves freely at ( = £. In the state variables
z = pe 5 and xg = 84 this gives the (boundary) conditions

z1(0,t) = 0 and z2(¢,t) = 0.
The power balance becomes

Fi(t) = [(Ha)" (¢ 0)Py () (G.1)]

L

( 7'%2&2’,?) )T ( 1o ) < 7221?)212((% )] "

0

1

2




Example: the wave equation

Now we check the conditions.

> P = <§) (1)> is an invertible 2 x 2 matrix (n = 2).
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Example: the wave equation

Now we check the conditions.
> P = <§) (1)> is an invertible 2 x 2 matrix (n = 2).
» Py =0, so skew-symmetric.
> 1f0<m < T(),p(¢)"t < M for all ¢, then
H(C) = (P(C)—l T?()) satisfies mIo < H(() < M.

0 0 1_ 1 (0 1 10
1 )RO —\/5<0 11 O> has rank 2.



Example: the wave equation

Now we check the conditions.
> P = <§) (1)> is an invertible 2 x 2 matrix (n = 2).
» Py =0, so skew-symmetric.

If0<m <T(C),p(¢)"t < M for all ¢, then

H(C) = (P(Co)_l T?()) satisfies mIo < H(() < M.

PWB=<1 00 0>R01:1<0 11 O> has rank 2.

v

0010 v2\0 -1 1 0
> H(0) =0.

Thus our pH system has for every xg € X a unique weak solution
for t € R with constant energy.



Dirac and PDE

Assume that we add a damping to the left hand side of Dy..

D

f= P+ Pe

WY g (O
(&)=m(:l




Dirac and PDE

Assume that we add a damping to the left hand side of Dy..

D

f= P+ Pe

Jo\ _ e(l)
( e,j ) =Ro ( ¢(0)

Question: What would now hold for H (t)?



Solution to pH-PDE

Theorem (Le Gorrec, Maschke & Z. '05, Jacob & Z '11)

Given our port-Hamiltonian partial differential equation
or 0
—(,t)=Pi=— + P t
() = (Pige + o) (HO(6.0)

with the properties on Py, P, and H, and boundary conditions
Wg (gg) =0, Wp an x 2n-matrix. Then the following are
equivalent:

» The PDE has for every xq € X a unique weak solution
satisfying ||x(t)||x < ||xolln, t > 0, i.e, a contraction
semigroup;

> Wpg can be written as S (I +V I —V) with S invertible
and V satisfies VV T < I;

» Wy has full rank, and H(0) <0 for all (smooth) initial
conditions satisfying the boundary conditions.



Input and outputs

We don’t only want to study homogeneous PDE's, but also want
to allow for control/inputs and observations/outputs. Assume that
we add an input and output to the left hand side of Dy,.

D
f=P%+ Pe

fo ) _ e(t)
(£)onls

This is a port-Hamiltonian system with damping, and
inputs/outputs.




Input and outputs

The partial differential equation associated to




Solution to inhomogeneous pH-PDE

Theorem (Z, Le Gorrec, Maschke & Villegas '10, Jacob & Z
'11)
Given our port-Hamiltonian partial differential equation

St = (P B) H(Qa(c.0)

ot >’ ¢ ’
with the properties on Py, P; and H, and boundary conditions,
input and outputs

W (o) = 50
We ca(t) y(t)
with Wy := (VW‘,@;) a full rank n x 2n-matrix. If there exists a

unique weak solution when u = 0, then for every initial condition
in X and every u € L?((0,t1);R™) there is a unique solution with
y € L2((0,t1); R¥), t1 > 0 arbitrary.




Solution to inhomogeneous pH-PDE

Comments

» Note that we have simple condition for existence of the
homogeneous PDE.

» It is standard “PDE-theory” to show that for sufficiently
smooth inputs you have existence, see [Le Gorrec, Maschke &
Z '05].

» The proof of this theorem is based on a result by G. Weiss
from 1994.



Example: the wave equation

g/\/\}u 9 0,4 =0,



Example: the wave equation

0w 1 0 ow
G = o TG
T %‘;(o,t)zo, T(z)aaw(e,t):u(t)
¢
et =y

So we control the force and measure the velocity at the right end.



Example: the wave equation

0w 1 0 ow
G = o TG
T aat (0,1) =0, T(E)Z (6,t) = ult)
¢
dw
S0 = y(@).

So we control the force and measure the velocity at the right end.
Since have shown that for u = 0 we have a solution (even a unitary
group), we have a unique (weak) solution for all initial conditions
in X and every u € L2(0,t;).



Transfer function, general

Let ¥ be a system with input u(t), output y(¢) and remaining
variables z(t).
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Let s € C and ug € U (input (value) space) be given. If there
exists a solution (u(t), z(t),y(t) of the form

(u(t), 2(t),y(t)) = (upest, zoest, yoest), then this is called an
exponential solution.



Transfer function, general

Let ¥ be a system with input u(t), output y(¢) and remaining
variables z(t).

Let s € C and ug € U (input (value) space) be given. If there
exists a solution (u(t), z(t),y(t) of the form

(u(t), 2(t),y(t)) = (upest, zoest, yoest), then this is called an
exponential solution.

Let s € C be given. If for every ug € U, there exists a (unique)
exponential solution, then the map G(s) : U — Y, G(s)up = yo is
called the transfer function at s of the system 3.



Transfer function, pH-PDE

For our pH-PDE

Lt = (Pgn) OG0

0=Wea (20): wt)=wes (2))
y(t) = Wo (20

the transfer function is found by solving for given ug € R™, s € C
9zo(¢)e” 9 ¢
TONE (P + P st .
o g6 B ) [0
0 — WBJ <f8,065t> : uoest — WB,Z (fB,D‘?St) :

86,06“ 66,06“

st __ f8,035t
yoe - WC <88,055t> .



Transfer function, pH-PDE

This is the same as solving

sz0(C) = (ch ; Po) H(C)zo(O)]
0=Wg (éfg:g) ; up = Wp2 <Z§;3) ;

Yo = We (£38>



Transfer function, pH-PDE

This is the same as solving

sz0(C) = (ch ; Po) H(C)zo(O)]
0=Wg (Zg:g) ; up = Wp2 <£§;3) ;

Yo = We (£33>

This is almost always impossible.



Transfer function, pH-PDE

This is the same as solving

sz0(C) = (ch ; Po) H(C)zo(O)]
0=Wg (éfg:g) ; up = Wp2 <Z§;3) ;

Yo = We (£38>

This is almost always impossible. However, the balance equation
can give properties of the transfer function G(s).
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% ) W(Cﬂf) PGES [T(C)M(Qt)]




Example: the transfer function of the wave equation

0w 1 0 ow
) gz (&1 = PGER [T(C)ag(ﬁt)]
T %;(O,t) =0, T() z’” (6,t) = ult)
¢
0=yt

= (O G (60 5 (D) - TO 0.0 0.0

= u(t)y(?).



Example: the transfer function of the wave equation

% ) W(Cﬂf) PGES [T(C)ag(ﬁt)]

= (O G (60 5 (D) - TO 0.0 0.0

= u(t)y(?).

Since H(t) = (z(t), Hxz(t)), we find
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A(t) = L {e(t), Harlt)) = u(tyy(0)
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H(t) = — (o€, Hzoe®t) = ugestyoe®.

dt

2s(xpe’t, Hrpe®) = ugeype™ <
25(xo, Hao) = uoyo = uoG(s)uo = G(s)ug.

Since (xg, Hxzo) > 0, we find G(s) > 0 for s > 0.



Example: the transfer function of the wave equation

For every solution of this controlled and observed vibrating string

A(t) = L {e(t), Harlt)) = u(tyy(0)

Substituting the exponential solution, we have

H(t) = — (o€, Hzoe®t) = ugestyoe®.

dt
2s(xpe’t, Hrpe®) = ugeype™ <
25(xo, Hao) = uoyo = uoG(s)uo = G(s)ug.

Since (xg, Hxzo) > 0, we find G(s) > 0 for s > 0.
G is "positive real”.



C'est tout



