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c? semigroups

Semigroups in Hilbert spaces

Let X be a Hilbert space, D(A) a subspace of X and let
A:D(A) — X be a linear operator. If X is finite dimensional and
A € L(X), then the operators (e!4);>0 describes the evolution of
the state of a linear system 2(t) = Az(t).

Definition 1

A family T = (T});>o of operators in £L(X) is a strongly
continuous semigroup on X if

(1) To =1,

(2) T4yr = Ty T, for every t,7 > 0 (the semigroup property),

(3) t—)(l)fll’fl>0 tZ z, 1or all z € (S rong continul y)

If zo € X is the initial state of the process at time ¢t = 0, then its
state at time ¢ > 0 is z(¢) = T¢zo. Note that z(t 4 7) = T;2(7), so
that the process does not change its nature in time (LTI).
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c? semigroups

Semigroups and linear evolution equations

The linear operator A : D(A) — X defined by

T,z —
D(A) = {z eX lim 2~ exists} ,
t—=0, >0 ¢
T,z —
Az= lim L7 (2 € D(A)),

t—0, t>0 t

is called the infinitesimal generator of the semigroup T.

Proposition 1

Let T be a strongly continuous semigroup on X, with generator A.
Then for every z € D(A) and t > 0 we have that T,z € D(A) and

%th = ATtZ = TtAZ
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c? semigroups

Adjoints

Let A: D(A) — X be a densely defined operator. The adjoint of
A, denoted A*, is an operator defined on the domain

A
sup |<Z’y>|<oo}

DA =dye X
2€D(A), 2#0 ||Z||

By the Riesz representation theorem, there exists a unique w € X
such that (Az,y) = (z,w). Then we define A*y = w, so that

(Az,y) = (2, A"y) (z € D(A), y € D(AY)).
A is said self-adjoint if A = A*.

Proposition 2

Let T be a strongly continuous semigroup on X. Then the family
of operators T* = (T})¢>0 is also a strongly continuous semigroup
on X, and its generator is A*.
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c? semigroups

Checking that an operator is self-adjoint

Proposition 3

If Ay : D(Ag) — H is symmetric, s € C and both sI — Ay and
sI — Ay are onto, then Ay is self-adjoint and s,s € p(Ap).

Let X = L?[0,n] and let Ay : D(Ag) — X be the operator defined

by
D(Ao) = {z € H*(0,7) | 2(0)=2z(7) =0},
Agz = —jj; (Z S D(Ao))
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c? semigroups

More examples of self-adjoint operators

Example 4 (The Dirichlet Laplacian)

A= —Ap, with X = L?(Q) and

D(4o) = {p € Hy(Q) | Ap e L*(Q)}, Aop = —A¢.

Example 5 (The Stokes operator)

We need more notation, such as
L2(Q) ={pe LX(R3) | divp=0, ¢-n=0 on 89},

P: L2(Q;R3) — L2(Q) is called the Leray or Helmholtz projector

Aop = —2PAp,  D(Ag) = L2(Q) N HL(Q; R3) N H(Q; R3).
p
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c? semigroups

Nonhomogeneous equations

With f € L{ _([0,00); X), consider the differential equation
(t) = Az(t) + (). (1)

A weak solution of (1) is a function z € C([0,00); X) which
satisfies, for every ¢ € D(A*) and every t > 0

(2(t) — 2(0), p) = / [((0), A*9) + (£(0), 0] do

With the notation of Definition 6, there exists an unique weak
solution z of (1) with z(0) = zp € X, which is given by

t
z(t) = Tyzo + /0 Ty f(0)do.
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c? semigroups

From semigroups to evolution PDEs

When applying semigroups to evolution PDEs, X and D(A) are
often Sobolev spaces. For instance, for heat equation in a domain
Q C R", one can take X = L?(Q), D(A) = H?(Q) N H}(Q) and

Ap=Ap (¢ € D(A)).

Basic question: Given a linear PDE operator A, how can one
check that it generates some semigroup T?

General answer: Apply theorems of Hille-Yosida and of
Lumer-Phillips.

We limit ourselves to a consequence of these theorems, as
described in the next section.
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Semigroups generated by negative operators

Basic de definitions

Definition 7

Let Ag : D(Ap) — X be self-adjoint. Then Ay is positive if
(Apz,z) > 0 for all z € D(Ag). Ag is strictly positive if for some

m >0 (Aoz,2) > ml2|? (z € D(Ay)). (2)

We say that A is negative (respectively strictly negative) and we
write A < 0 (respectively A < 0) if A = —Ay, with Ay positive
(respectively strictly positive).

Notation. We set X for D(Ag) endowed with the graph norm,
X% for the completion of X with respect to the norm

lells = VT + Ao o),

and X _ 1 is the dual of X1 with respect to the pivot space X.
2 2
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Semigroups generated by negative operators

Examples of (strictly) positive operators

Example 8 (The Dirichlet Laplacian)
A= —Ap, with X = L?*(Q) and
D(Ao) = {6 € Hy(Q) | Ap € LAD)}, Ao = A,

X1 = H} (D), X_y= X 1Q).

[l

Example 9 (The Stokes operator)

We need more notation, such as
L2(Q) = {pe LE(R3) | divp=0, ¢-n=0 on 89},

P: L*(;R%) — L2(Q) s called the Leray or Helmholtz projector

Aop = —2PAyp,  D(Ag) = L2(Q) N HL(Q;R3) N HA(Q; R3).
o)
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Semigroups generated by negative operators

Semigroup generation and smoothing properties

Proposition 5

Assume that A : D(A) — X is negative. Then A generates a
semigroup T satisfying:
o || T, <1 foreveryt >0,
o Tz € D(A™) (z€e X, t>0).

Proposition 6

Let A = — Ay, with Ag > 0. Then initial value problem

(1) = Az(t) + f(t), 2(0) = 2o,
admits, for every zy € X, and f € L3([0,00); X) an unique
solution z € C ([0,00);)%) N L2([0, 00); X1) N H(]0, 00); X).
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Towards nonlinear systems

Abstract parabolic systems with input and output

Let U, X and Y be Hilbert spaces and let Ag be strictly positive in
X. Let A=—-Ag, Be L(U, X 1), Ce L(X%,Y). Consider the

system with input and output

of=

2(t) = Az(t) + Bu(t), z(0)=z0, y(t)=Cz(1). (3)

Proposition 7

Let zg € X and the input function u € L*([0,00);U). Then the
system (3) admits an unique solution z € C([0,00); X') with

I=01+2 [ 121 do = 0l +2 [ (u(o)., B*~(e))ode ()

v
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Towards nonlinear systems

An abstract local existence result

Theorem 10

We assume that Y C X, with continuous and dense imbedding,
that N : X xY — U is bilinear, continuous and that there exists
K >0 andp € (0,1) such that

1—

NGz w)llv < Kllzllx Iyllx ® lully,  (z€X, yeY). (5)
Moreover assume that C' admits an extension C' € L£(X) and the
system is such that its output is given by y(t) = Cz(t). Then or

every zo € X and every u € L?([0,00);U), there exists T > 0 such
that the system (3)

(t) = Az(t) + BN(z(t),y(t)), 2(0) = 20, (6)

admits a solution z € C([0,7]; X).
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Towards nonlinear systems

|dea of the proof (1)

Let 7> 0 and let G7 : L2([0,T); U) — L3([0,T]; U) be defined by
[Sr(v)](8) = N(=(t),y(t))  for t€[0,T], ve L*([0,T}U),

where (1) = Az(t) + Bu(t), 2(0) = zp.

To that show Gr has a fixed point we note that, from (5),

2 2(1—p) 4-2p

157 (0) (D) < KPIICIIL =@l 5" Iy @3-

On the other hand, there exists kr > 0 with
Iz + Iyl 20,1157y < Fr (120l + 10l 20,7:0)) -
Consequently:
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Towards nonlinear systems

|dea of the proof (Il)

2

2 4
v <k + )P - 7
||9T(U)HL%([07T];U) 7 ([[20ll + [0l 20,1750 (7)

Let By be the ball of radius M, centered at the origin, in
L%([0,T);U). From (7) it follows that for v € By we have

(2M)?. (8)

Nk

1S (v)]| <k

L (0.13:0)
Applying Holder's inequality, we obtain that for every v € By 1 we
have

5 2 izt
1S () L2 jo,r0) < k7 (2M)° T2,
For T sufficiently small (depending on the system and on M) we

have G7(v) € By, for every v € By .
We end up by showing the contraction property.
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Applications to mathematical fluid dynamics

The viscous Burgers equation

2(t,x) = zga(t, ) — 2(t, )25 (¢, x) t>0, x€(0,1),

z(t,0) = 2(t,1) =0 t>0,

2(0,2) = zo(z y € (0,1),

y(t,x) = z(t, ) t>0, xe€(0,1).
(9)

For every 2y € Hi(0,1) there exists a unique solution z of (9)
such that
2 € Hioc((0,00); L*[0,1]) N C([0, 00); Hy (0, 1))
N Li. ([0,00); H*(0,1)) .

loc

V.
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Applications to mathematical fluid dynamics

Proof (1): Local in time solutions

We introduce the state, input and output spaces
X = H}(0,1),U = L*(0,1), Y = H*0,1)N H(0,1),

and the strictly negative operator A : D(A) — X by
Ap =, 9 ED(A) ={pe H0,1) | ¢, ¢ur € Hy(0,1)}.

In this case X% = H?(0,1)N H(0,1), X_% = L]0, 1]. We take

B the identity operator on L?[0,1]. We denote by (' the identity
operator of F}(0,1), which can be restricted to an unbounded
observation operator C' € L(X1,Y).

2

Define N: X x Y — U is defined by N(z,y) = —zy,. We have

INCz )l = 2yl 2p0,1) < 2llcro 1Yl 20,1 < Kollzl x 1yl x,

so that (5) holds with p = 0 and thus for every any p € (0, 1).



Applications to mathematical fluid dynamics

Proof (I1): Global in time solutions

First note that we have the energy estimates

t
()7 +/0 l2z(o) 172 do < Jlz0]l72-

t t
|mmmﬁ4u%@ﬂéw<Khmm@+Amemw%w-

Note that ) 5
12(t) z(8)[| 2 < 2Bl cpoagllze (B2 < V2]|2(8)] allze(®)] 72 It
follows that

t
nmm;<m+&£<%mummw@w,

and we conclude by Gronwall’s inequality.
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Applications to mathematical fluid dynamics

The incompressible Navier-Stokes equations

pz—vAz+p(z-V)z+Vp=w, t20, 2€Q, (10)
dive=0, t>0, z€Q, (11)

z=0, t=>0, ze€0, (12)

2(0,z) = zo(z), x€. (13)

For every initial state zo € H}(€;R3) with divzg = 0, there exists
T > 0 and a unique solution (z, p) of (10)-(13) such that

2 € C([0, T} HY () N L2([0, T); LA(Q), p € L2((0, T); HY(Q)).
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Applications to mathematical fluid dynamics

Idea of the proof

Take X =V (), YV = H>(Q) NV (Q), U = L*(%), and let

A = —Agp, where Ag is the part of the Stokes operator in X. B
and C are the identity of L?(2) and N : X x Y — U is defined by
Define N(z,y) = —P[(z - V)y]. To estimate N we note that

20|20 w- [ 202w 2w
Q ox; 0 02, s

2/5

3yj 8/5

8%

0y
< zill7s 0 Haxj
1

L2(Q) e

. dy; 12 2/5,  18/5
Since H' C L5, [, 22(x) | G2.)| " < KllzallZ sl 57y 575

Thus [|(z - V)yllo < K|z x [yl lvlly® so (5) holds with
p=4/5.
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