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Semigroups in Hilbert spaces

Let X be a Hilbert space, D(A) a subspace of X and let
A : D(A) → X be a linear operator. If X is finite dimensional and
A ∈ L(X), then the operators (etA)t≥0 describes the evolution of
the state of a linear system ż(t) = Az(t).

Definition 1

A family T = (Tt)t⩾0 of operators in L(X) is a strongly
continuous semigroup on X if
(1) T0 = I,
(2) Tt+τ = TtTτ for every t, τ ⩾ 0 (the semigroup property),
(3) lim

t→0, t>0
Ttz = z, for all z ∈ X (strong continuity).

If z0 ∈ X is the initial state of the process at time t = 0, then its
state at time t ⩾ 0 is z(t) = Ttz0. Note that z(t+ τ) = Ttz(τ), so
that the process does not change its nature in time (LTI).
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Semigroups and linear evolution equations

Definition 2

The linear operator A : D(A) → X defined by

D(A) =

{
z ∈ X

∣∣∣∣ lim
t→0, t>0

Ttz − z

t
exists

}
,

Az = lim
t→0, t>0

Ttz − z

t
(z ∈ D(A)),

is called the infinitesimal generator of the semigroup T.
Proposition 1

Let T be a strongly continuous semigroup on X, with generator A.
Then for every z ∈ D(A) and t ⩾ 0 we have that Ttz ∈ D(A) and

d

dt
Ttz = ATtz = TtAz.
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Adjoints

Let A : D(A) → X be a densely defined operator. The adjoint of
A, denoted A∗, is an operator defined on the domain

D(A∗) =

{
y ∈ X

∣∣∣∣∣ sup
z∈D(A), z ̸=0

|⟨Az, y⟩|
∥z∥

< ∞

}
.

By the Riesz representation theorem, there exists a unique w ∈ X
such that ⟨Az, y⟩ = ⟨z, w⟩. Then we define A∗y = w, so that

⟨Az, y⟩ = ⟨z,A∗y⟩ (z ∈ D(A), y ∈ D(A∗)).

A is said self-adjoint if A = A∗.

Proposition 2

Let T be a strongly continuous semigroup on X. Then the family
of operators T∗ = (T∗

t )t⩾0 is also a strongly continuous semigroup
on X, and its generator is A∗.
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Checking that an operator is self-adjoint

Proposition 3

If A0 : D(A0) → H is symmetric, s ∈ C and both sI −A0 and
sI −A0 are onto, then A0 is self-adjoint and s, s ∈ ρ(A0).

Example 3

Let X = L2[0, π] and let A0 : D(A0) → X be the operator defined
by

D(A0) =
{
z ∈ H2(0, π) | z(0) = z(π) = 0

}
,

A0z = −d2z

dx2
(z ∈ D(A0)).
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More examples of self-adjoint operators

Example 4 (The Dirichlet Laplacian)

A = −A0, with X = L2(Ω) and

D(A0) =
{
ϕ ∈ H1

0 (Ω)
∣∣ ∆ϕ ∈ L2(Ω)

}
, A0ϕ = −∆ϕ.

Example 5 (The Stokes operator)

We need more notation, such as

L2
σ(Ω) = {φ ∈ L2(Ω;R3) | divφ = 0, φ · n = 0 on ∂Ω},

P : L2(Ω;R3) → L2
σ(Ω) is called the Leray or Helmholtz projector

A0φ = −ν

ρ
P∆φ, D(A0) = L2

σ(Ω) ∩H1
0 (Ω;R3) ∩H2(Ω;R3).
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Nonhomogeneous equations

Definition 6

With f ∈ L1
loc([0,∞);X), consider the differential equation

ż(t) = Az(t) + f(t). (1)

A weak solution of (1) is a function z ∈ C([0,∞);X) which
satisfies, for every φ ∈ D(A∗) and every t ≥ 0

⟨z(t)− z(0), φ⟩ =
∫ t

0
[⟨z(σ), A∗φ⟩+ ⟨f(σ), φ⟩] dσ.

Proposition 4

With the notation of Definition 6, there exists an unique weak
solution z of (1) with z(0) = z0 ∈ X, which is given by

z(t) = Ttz0 +

∫ t

0
Tt−σf(σ) dσ.
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From semigroups to evolution PDEs

When applying semigroups to evolution PDEs, X and D(A) are
often Sobolev spaces. For instance, for heat equation in a domain
Ω ⊂ Rn, one can take X = L2(Ω), D(A) = H2(Ω) ∩H1

0 (Ω) and

Aφ = ∆φ (φ ∈ D(A)).

Basic question: Given a linear PDE operator A, how can one
check that it generates some semigroup T?

General answer: Apply theorems of Hille-Yosida and of
Lumer-Phillips.

We limit ourselves to a consequence of these theorems, as
described in the next section.
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Basic de definitions

Definition 7

Let A0 : D(A0) → X be self-adjoint. Then A0 is positive if
⟨A0z, z⟩ ≥ 0 for all z ∈ D(A0). A0 is strictly positive if for some
m > 0 ⟨A0z, z⟩ ⩾ m∥z∥2 (z ∈ D(A0)). (2)

We say that A is negative (respectively strictly negative) and we
write A ⩽ 0 (respectively A < 0) if A = −A0, with A0 positive
(respectively strictly positive).
Notation. We set X1 for D(A0) endowed with the graph norm,
X 1

2
for the completion of X1 with respect to the norm

∥φ∥ 1
2
=

√
⟨(I +A0)φ,φ⟩,

and X− 1
2
is the dual of X 1

2
with respect to the pivot space X.
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Examples of (strictly) positive operators

Example 8 (The Dirichlet Laplacian)

A = −A0, with X = L2(Ω) and

D(A0) =
{
ϕ ∈ H1

0 (Ω)
∣∣ ∆ϕ ∈ L2(Ω)

}
, A0ϕ = −∆ϕ,

X 1
2
= H1

0 (Ω), X− 1
2
= X−1(Ω).

Example 9 (The Stokes operator)

We need more notation, such as

L2
σ(Ω) = {φ ∈ L2(Ω;R3) | divφ = 0, φ · n = 0 on ∂Ω},

P : L2(Ω;R3) → L2
σ(Ω) is called the Leray or Helmholtz projector

A0φ = −ν

ρ
P∆φ, D(A0) = L2

σ(Ω) ∩H1
0 (Ω;R3) ∩H2(Ω;R3).

Marius Tucsnak Mathematical Fluid Dynamics



C0 semigroups
Semigroups generated by negative operators

Towards nonlinear systems
Applications to mathematical fluid dynamics

Semigroup generation and smoothing properties

Proposition 5

Assume that A : D(A) → X is negative. Then A generates a
semigroup T satisfying:

∥Tt∥ ⩽ 1 for every t ⩾ 0,

Ttz ∈ D(A∞) (z ∈ X, t > 0).

Proposition 6

Let A = −A0, with A0 > 0. Then initial value problem

ż(t) = Az(t) + f(t), z(0) = z0,

admits, for every z0 ∈ X 1
2
and f ∈ L2([0,∞);X) an unique

solution z ∈ C
(
[0,∞);X 1

2

)
∩ L2([0,∞);X1) ∩H1([0,∞);X).
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Abstract parabolic systems with input and output

Let U , X and Y be Hilbert spaces and let A0 be strictly positive in
X. Let A = −A0, B ∈ L(U,X− 1

2
), C ∈ L(X 1

2
, Y ). Consider the

system with input and output

ż(t) = Az(t) +Bu(t), z(0) = z0, y(t) = Cz(t). (3)

Proposition 7

Let z0 ∈ X and the input function u ∈ L2([0,∞);U). Then the
system (3) admits an unique solution z ∈ C([0,∞);X) with

∥z(t)∥2+2

∫ t

0
∥z(σ)∥21

2

dσ = ∥z0∥2+2

∫ t

0
⟨u(σ), B∗z(σ)⟩Udσ (4)
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An abstract local existence result

Theorem 10

We assume that Y ⊂ X, with continuous and dense imbedding,
that N : X × Y → U is bilinear, continuous and that there exists
K ⩾ 0 and p ∈ (0, 1) such that

∥N(z, y)∥U ⩽ K∥z∥X ∥y∥1−p
X ∥y∥pY , (z ∈ X, y ∈ Y ). (5)

Moreover assume that C admits an extension C ∈ L(X) and the
system is such that its output is given by y(t) = Cz(t). Then or
every z0 ∈ X and every u ∈ L2([0,∞);U), there exists τ > 0 such
that the system (3)

ż(t) = Az(t) +BN(z(t), y(t)), z(0) = z0, (6)

admits a solution z ∈ C([0, τ ];X).
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Idea of the proof (I)

Let T > 0 and let GT : L2([0, T ];U) → L2([0, T ];U) be defined by

[GT (v)](t) = N(z(t), y(t)) for t ∈ [0, T ], v ∈ L2([0, T ];U),

where
ż(t) = Az(t) +Bv(t), z(0) = z0.

To that show GT has a fixed point we note that, from (5),

∥GT (v)(t)∥
2
p

U ⩽ K
2
p ∥C∥

2(1−p)
p

L(X) ∥z(t)∥
4−2p

p

X ∥y(t)∥2Y .

On the other hand, there exists kT > 0 with

∥z(t)∥+ ∥y∥L2([0,T ];Y ) ⩽ kT
(
∥z0∥+ ∥v∥L2([0,T ];U)

)
.

Consequently:
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Idea of the proof (II)

∥GT (v)∥
2
p

L
2
p ([0,T ];U)

⩽ kT
(
∥z0∥+ ∥v∥L2([0,T ];U)

) 4
p . (7)

Let BM,T be the ball of radius M , centered at the origin, in
L2([0, T ];U). From (7) it follows that for v ∈ BM,T we have

∥GT (v)∥
L

2
p ([0,T ];U)

⩽ k
p
2
T (2M)2. (8)

Applying Hölder’s inequality, we obtain that for every v ∈ BM,T we
have

∥GT (v)∥L2([0,T ];U) ⩽ k
p
2
T (2M)2 T

1−p
2 .

For T sufficiently small (depending on the system and on M) we
have GT (v) ∈ BM,T for every v ∈ BM,T .
We end up by showing the contraction property.
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The viscous Burgers equation


ż(t, x) = zxx(t, x)− z(t, x)zx(t, x) t ⩾ 0, x ∈ (0, 1),
z(t, 0) = z(t, 1) = 0 t ⩾ 0,
z(0, x) = z0(x) y ∈ (0, 1),
y(t, x) = z(t, x) t ⩾ 0, x ∈ (0, 1).

(9)

Theorem 11

For every z0 ∈ H1
0 (0, 1) there exists a unique solution z of (9)

such that

z ∈ H1
loc((0,∞);L2[0, 1]) ∩ C([0,∞);H1

0 (0, 1))

∩ L2
loc

(
[0,∞);H2(0, 1)

)
.
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Proof (I): Local in time solutions

We introduce the state, input and output spaces

X = H1
0 (0, 1), U = L2(0, 1), Y = H2(0, 1) ∩H1

0 (0, 1),

and the strictly negative operator A : D(A) → X by

Aφ = φxx, φ ∈ D(A) =
{
φ ∈ H3(0, 1) | φ, φxx ∈ H1

0 (0, 1)
}
.

In this case X 1
2
= H2(0, 1) ∩H1

0 (0, 1), X− 1
2
= L2[0, 1]. We take

B the identity operator on L2[0, 1]. We denote by C the identity
operator of H1

0 (0, 1), which can be restricted to an unbounded
observation operator C ∈ L(X 1

2
, Y ).

Define N : X × Y → U is defined by N(z, y) = −zyx. We have

∥N(z, y)∥U = ∥zyx∥L2[0,1] ⩽ ∥z∥C[0,1] ∥yx∥L2[0,1] ⩽ K0∥z∥X∥y∥X ,

so that (5) holds with p = 0 and thus for every any p ∈ (0, 1).
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Proof (II): Global in time solutions

First note that we have the energy estimates

∥z(t)∥2L2 +

∫ t

0
∥zx(σ)∥2L2 dσ ⩽ ∥z0∥2L2 .

∥zx(t)∥2L2+

∫ t

0
∥zxx(σ)∥2L2 dσ ⩽ K

[
∥(z0)x∥2L2 +

∫ t

0
∥z(σ)zx(σ)∥2L2 dσ

]
.

Note that

∥z(t) zx(t)∥L2 ⩽ ∥z(t)∥C[0,1]∥zx(t)∥L2 ⩽
√
2∥z(t)∥

1
2

L2∥zx(t)∥
3
2

L2 . It
follows that

∥zx(t)∥2L2 ⩽ K1 +K2

∫ t

0
(∥zx(σ)∥L2)∥zx(σ)∥2L2 dσ,

and we conclude by Gronwall’s inequality.
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The incompressible Navier-Stokes equations

ρż − ν∆z + ρ(z · ∇)z +∇p = u1, t ⩾ 0, x ∈ Ω, (10)

divz = 0, t ⩾ 0, x ∈ Ω, (11)

z = 0, t ⩾ 0, x ∈ ∂Ω, (12)

z(0, x) = z0(x), x ∈ Ω. (13)

Theorem 12

For every initial state z0 ∈ H1
0 (Ω;R3) with divz0 = 0, there exists

T > 0 and a unique solution (z, p) of (10)-(13) such that

z ∈ C([0, T ];H1
0 (Ω)) ∩ L2([0, T ];L2(Ω), p ∈ L2([0, T ]; Ĥ1(Ω)).
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Idea of the proof

Take X = V (Ω), Y = H2(Ω) ∩ V (Ω), U = L2(Ω), and let
A = −A0, where A0 is the part of the Stokes operator in X. B
and C are the identity of L2(Ω) and N : X × Y → U is defined by
Define N(z, y) = −P [(z · ∇)y]. To estimate N we note that∫

Ω
z2i (x)

[
∂yj
∂xi

(x)

]2
dx =

∫
Ω
z2i (x)

[
∂yj
∂xi

(x)

]2/5 [∂yj
∂xi

(x)

]8/5

⩽ ∥zi∥2L5(Ω)

∥∥∥∥∂yj∂xi

∥∥∥∥2/5
L2(Ω)

∥∥∥∥∂yj∂xi

∥∥∥∥8/5
L4(Ω)

.

Since H1 ⊂ L6,
∫
Ω z2i (x)

[
∂yj
∂xi

(x)
]2

≤ K∥zi∥2H1
0
∥yi∥2/5H1

0
∥yi∥8/5H2 .

Thus ∥(z · ∇)y∥U ⩽ K̃∥z∥X∥y∥1/5X ∥y∥4/5Y so (5) holds with
p = 4/5.
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