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Motivation

In very broad terms: modelling floating structures such as: Wave
Energy Converters (WECs), floating wind turbines, ...... when
they are close to the shore.
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Floating wind turbine
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@ The shallow water (or the Saint Venant) equations
© The coupled model

© Proof of the main result
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The shallow water (or the Saint Venant) equations

Notation

z 1
a U

Floating wind turbine
Unknown functions : h, H and g, Q with ¢ = vh.
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The shallow water (or the Saint Venant) equations

The governing equations (fluid alone)

Oh  0q
E—‘r% = 0 (t>0,x6[07€]):
0 (q 0 /1¢? N
G - (>0, =<[0,4),
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The shallow water (or the Saint Venant) equations

Lagrangian structure (1)

Ky is the kinetic energy and Uy is the potential energy of the fluid:

1 1
Ky = / phv? dz, Ur = / pgh? dz.
2 o 2 Joo.o

The associated Lagrangian is

T rtr1 2 1 oh  Oq
Le(h,q, H N\ :/ / —p— — Zpgh®+p\ + )| dz,
i 0= { ] [2 B PIv TP <6t Oz )}

where A1 (t,x) is a Lagrange multiplier.
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The shallow water (or the Saint Venant) equations

Lagrangian structure (1)

The governing equations are obtained by imposing that 6L, = 0
for any virtual displacement 0h(t, ) and d¢(t, z) such that

0h(0,z) = 0h(T,x) =0H(0) = dH(T) = 6p(0,2) = dp(T,x) =0,

do(t,0) = dp(t, £) =0,

where
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The coupled model

The Lagrangian formalism

T tr1 ¢ 1 oh 9q
L(h,q, H, A1, X :/ / —p——=pgh®+p\ dx
( 1,A2) 0{0[2h2 1(81&8)]
_l’_

/j Ao (H . hﬂ da + %MHZ . MgH} dt.

Imposing that §£ = 0 for any virtual displacement 0h(t,x), dH (t)
and dp(t, x) such that

0h(0,x) = 0h(T,x) = 0H(0) = dH(T) = 6p(0,z) = dp(T,x) =0,
0p(t,0) = dp(t,€) =0

we obtain
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The coupled model

The coupled governing equations

oh o
) ot Oz

0 0 /1

) +£(5%+9H+§)

2
() + 72 (3 + )

2

(Gazvome2) = e
(o +2)-
MH(t)

=0 (t>0, z€IUE),
= 0 (t>0, ze€),
= (t>0, z€d),

- [ +)-
- (G-

b
= —Z\4g+/p(t,m)dm (t>0).

a0,
| @0,
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The coupled model

Stationary states

One can check that the stationary solutions of (??)—(??) can be
parametrized by H > 0 by setting

M Mg

h:=H :
R b—a

and in that case

h z€é 0 ze€é&
hS(ﬂC)Z{H veg  T@=0 and pS(fE)Z{ :
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The coupled model

Main result
Assume that the initial data are close to an equilibrium with H = H > 0, Then we
have solutions with
H e H+ H?*(0,00), heh+ HY(0,00; H(&)) N CL([0,00); L*(E)),
q € Cy([0, 00); H'(0,4))
ge € H'(0,00; L*(€)) N Cy([0,00); H' (€)) N L*(0, 00; H*(E)),
g9 € H'(0,00; P1(9))

M
Py € |T|g + L(0, 00; P2(J))

/h(t,x)da:+H(t)(b—a) = Ml‘; +H( (t>0).
&
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Proof of the main result

Equivalent form of the governing equation

o= (t>0),

oh 0q B

E(t,x)—l—%(t,x)—o (t>0, z€€),
dqg 0 (¢* gh? 0 (udq
&JF&U( +2> ha$<hax> (t>0, xz €&,

q(t,0) = q(t.0) = 0 (t > 0),

q(t,a) = qa(t), q(t,b) = q(t) (t>0),

o) = R (a0 ghata ) ae D). g al b)) )

with Qa<t) = Q(ta ai) - q(t7a+)7 qb(t) = Q(tv bi) - q<t7 b+)
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Proof of the main result

Linearization

L (t>0),
oh dq, .
875( )+8—( r)=0 (t>0, x€é&),
dq _0h 0 (0q
8t+ ham P <) f1 (t>0, z€éf),
q(t,0) = q(t,£) =0 (t > 0),
Q(taa) ZQa(t)v Q(tab) :(Ib() (t > 0)7
,b ,a 7 O _
[qa]—so<H> paltlt) 1 g(R(a7) = H) — £82(a7)
ap % q(, bl)) q(-,a) (h( bT) —H) _|_%<lg(.,b+)
+ fo
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Proof of the main result

Wellposedness of the linearized problem

Assume that €70) f; € L%(0, 00; L2(€)), e"0) fo € L?(0, 00; R?).
Then the linearized system admits a unique solution with

¢"H € H'(0,00), €"he H'(0,00; H'(E)),
" e H'(0,00; L2(€)) N Cy(]0, 00); HY(€)) N L2(0, 00; H2(8)),
e"g, € H(0,00), €"Vg, € HY(0,00),
/ﬁ(t,x) A+ A(t)(b—a)=0 (t>0).
&

Moreover, there exists C' > 0 such that

1" H || 171 0,00) 11" 1110, 00111 £)) €7 1] 1 (0,00 2(8))0C ([0,00):2
+ ||€77() (qaa Qb) ||H1(0,oo;R2)
< C (1ol +I1oll ey +laoll 1)+ |e (1, £2)|

L2(o,oo;L2(e)xR2)) '
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Proof of the main result

Fixed point procedure

B, = {(fl-,f‘z) € L3(0,00; L*(&) x R?) ; [ (11, fo) < }

L2(0,00;L2(&)xR2)

and the map

Z: (f1, f2) € B (FL(hyq), Fa(H, by q, by 4a))

where (fI,iNL,q,qb,qa) is the solution of the linearized problem.
We end by proving that for € small enough = is a strict contraction
of B..
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Proof of the main result

open questions

Non vertical walls for the floating body

2D Saint-Venant (even for vertical walls)

°
°

@ Solid moving also horizontally

@ Control issues (see Ringwood's book)
°

Other fluid models like Euler (see Lannes), Navier-Stokes,
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Proof of the main result

Thanks for your attention !
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