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Motivation

In very broad terms: modelling floating structures such as: Wave
Energy Converters (WECs), floating wind turbines, . . . . . . when
they are close to the shore.

Floating wind turbine
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Notation

Floating wind turbine
Unknown functions : h, H and q, Q with q = vh.
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The governing equations (fluid alone)

∂h

∂t
+

∂q

∂x
= 0 (t > 0, x ∈ [0, ℓ]),

∂

∂t

( q

h

)
+

∂

∂x

(1
2

q2

h2
+ gh

)
=

µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
(t > 0, x ∈ [0, ℓ]),

q(t, 0) = q(t, L) = 0.
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Lagrangian structure (I)

Kf is the kinetic energy and Uf is the potential energy of the fluid:

Kf =
1

2

∫
(0,ℓ)

ρhv2 dx, Uf =
1

2

∫
(0,ℓ)

ρgh2 dx.

The associated Lagrangian is

Lf (h, q,H, λ1) =

∫ T

0

{∫ ℓ

0

[1
2
ρ
q2

h
− 1

2
ρgh2+ρλ1

(∂h
∂t

+
∂q

∂x

)]
dx,

where λ1(t, x) is a Lagrange multiplier.
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Lagrangian structure (II)

The governing equations are obtained by imposing that δLf = 0
for any virtual displacement δh(t, x) and δφ(t, x) such that

δh(0, x) = δh(T, x) = δH(0) = δH(T ) = δφ(0, x) = δφ(T, x) = 0,

δφ(t, 0) = δφ(t, ℓ) = 0,

where
∂φ

∂t
= q and

∂(δφ)

∂t
= δq.
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The Lagrangian formalism

L(h, q,H, λ1, λ2) =

∫ T

0

{∫ ℓ

0

[1
2
ρ
q2

h
−1

2
ρgh2+ρλ1

(∂h
∂t

+
∂q

∂x

)]
dx

+

∫
I

[
λ2

(
H − h

)]
dx+

1

2
MḢ2 −MgH

}
dt.

Imposing that δL = 0 for any virtual displacement δh(t, x), δH(t)
and δφ(t, x) such that

δh(0, x) = δh(T, x) = δH(0) = δH(T ) = δφ(0, x) = δφ(T, x) = 0,

δφ(t, 0) = δφ(t, ℓ) = 0

we obtain
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The coupled governing equations

∂h

∂t
+

∂q

∂x
= 0 (t > 0, x ∈ I ∪ E),

∂

∂t

( q

H

)
+

∂

∂x

(1
2

q2

H2
+ gH +

p

ρ

)
= 0 (t > 0, x ∈ I),

∂

∂t

( q

h

)
+

∂

∂x

(1
2

q2

h2
+ gh

)
=

µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
(t > 0, x ∈ E),[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(t, a+) =

[(1
2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(t, a−),[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(t, b−) =

[(1
2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(t, b+),

MḦ(t) = −Mg +

∫ b

a

p(t, x) dx (t > 0).
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Stationary states

One can check that the stationary solutions of (??)–(??) can be
parametrized by H > 0 by setting

h := H +
M

b− a
, p :=

Mg

b− a

and in that case

hS(x) =

{
h x ∈ E

H x ∈ I
, qS(x) = 0 and pS(x) =

{
0 x ∈ E

p x ∈ I
.
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Main result
Assume that the initial data are close to an equilibrium with H = H > 0, Then we
have solutions with

H ∈ H +H2(0,∞), h ∈ h+H1(0,∞;H1(E)) ∩ C1
b ([0,∞);L2(E)),

q ∈ Cb([0,∞);H1(0, ℓ))

q|E ∈ H1(0,∞;L2(E)) ∩ Cb([0,∞);H1(E)) ∩ L2(0,∞;H2(E)),

q|I ∈ H1(0,∞;P1(I))

p|I ∈
Mg

|I|
+ L2(0,∞;P2(I))∫

E

h(t, x) dx+H(t)(b− a) = M
|E|
|I|

+Hℓ (t ≥ 0).
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Equivalent form of the governing equation

Ḣ = −qb − qa
b− a

(t ⩾ 0),

∂h

∂t
(t, x) +

∂q

∂x
(t, x) = 0 (t > 0, x ∈ E),

∂q

∂t
+

∂

∂x

(
q2

h
+

gh2

2

)
= h

∂

∂x

(
µ

h

∂q

∂x

)
(t > 0, x ∈ E),

q(t, 0) = q(t, ℓ) = 0 (t > 0),

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0),[
q̇a
q̇b

]
= R

(
H, q(·, a), ∂

∂x
q(·, a−), h(·, a−), q(·, b), ∂

∂x
q(·, b+), h(·, b+)

)
,

with qa(t) := q(t, a−) = q(t, a+), qb(t) := q(t, b−) = q(t, b+).
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Linearization

˙̃
H = −qb − qa

b− a
(t ⩾ 0),

∂h̃

∂t
(t, x) +

∂q

∂x
(t, x) = 0 (t > 0, x ∈ E),

∂q

∂t
+ gh

∂h̃

∂x
− µ

∂

∂x

(
∂q

∂x

)
= f1 (t > 0, x ∈ E),

q(t, 0) = q(t, ℓ) = 0 (t > 0),

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0),

[
q̇a
q̇b

]
= S0(H)

 µ

H

q(·,b)−q(·,a)
b−a + g

(
h̃(·, a−)− H̃

)
− µ

h

∂q
∂x(·, a

−)

− µ

H

q(·,b)−q(·,a)
b−a − g

(
h̃(·, b+)− H̃

)
+ µ

h

∂q
∂x(·, b

+)


+ f2
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Wellposedness of the linearized problem

Assume that eη(·)f1 ∈ L2(0,∞;L2(E)), eη(·)f2 ∈ L2(0,∞;R2).
Then the linearized system admits a unique solution with

eη(·)H̃ ∈ H1(0,∞), eη(·)h̃ ∈ H1(0,∞;H1(E)),

eη(·)q ∈ H1(0,∞;L2(E)) ∩ Cb([0,∞);H1(E)) ∩ L2(0,∞;H2(E)),

eη(·)qa ∈ H1(0,∞), eη(·)qb ∈ H1(0,∞),∫
E

h̃(t, x) dx+ H̃(t)(b− a) = 0 (t ≥ 0).

Moreover, there exists C > 0 such that

∥eη(·)H̃∥H1(0,∞)+∥eη(·)h̃∥H1(0,∞;H1(E))+∥eη(·)q∥H1(0,∞;L2(E))∩Cb([0,∞);H1(E))∩L2(0,∞;H2(E))

+ ∥eη(·)(qa, qb)∥H1(0,∞;R2)

≤ C
(
|H̃0|+∥h̃0∥H1(E)+∥q0∥H1(E)+

∥∥∥eη(·)(f1, f2)∥∥∥
L2(0,∞;L2(E)×R2)

)
.
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Fixed point procedure

Bε :=

{
(f1, f2) ∈ L2(0,∞;L2(E)× R2) ;

∥∥∥eη(·)(f1, f2)∥∥∥
L2(0,∞;L2(E)×R2)

≤ ε

}

and the map

Ξ : (f1, f2) ∈ Bε 7→ (F1(h̃, q), F2(H̃, h̃, q, qb, qa))

where (H̃, h̃, q, qb, qa) is the solution of the linearized problem.
We end by proving that for ε small enough Ξ is a strict contraction
of Bε.
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Some open questions

Non vertical walls for the floating body

2D Saint-Venant (even for vertical walls)

Solid moving also horizontally

Control issues (see Ringwood’s book)

Other fluid models like Euler (see Lannes), Navier-Stokes,
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Thanks for your attention !
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