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Pics: Alstom, powerandcables.com, Siemens, giphy.com

Reasons for using AC:
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Most commonly grids are
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Synchrounous genartors (SG)

SG external appearance: SG schematic representation:
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Simplified block diagram of a conventional SG with excitation control:
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SGs connected together in a
First explanation in 2012 (DB

mechanisms:

Inertia E =5 J @’

Frequency droop
TD, (w-w,)

Source
Derr, Louis Cyclopedia of Engineering (Chicago, IL: American Technical Society, 1911)

https://etc.usf.edu/clipart/77800/77872/77872_governor_tbn.htm
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https://www.e-education.psu.edu/ebf483/node/705
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S of conventional (power source) control for grid power converters

The frequency response in case of sudden overload (or generator loss) for a grid

dominated by synchronous generators: £ i
* The frequency drops to a minimum value (Nadir) 50—
nertia Secondar
* The Nadir and RoCoF (Rate of Change of Frequency) Response @emy Control

Primary Frequency
Control

depends on the energy stored in the total rotating mass
(rotors of generators and turbines)

RoCoF = rate of change
of frequency

* The droop control takes action (primary frequency control)
"~ Nadir

seconds

* The frequency goes back to rated value thanks to the
(slow) action of the secondary frequency control

/L
11

minutes r

In a grid with large penetration of static power converters, the total system inertia is
drastically lowered and therefore the RoCoF increases while Nadir may drop too
much, triggering protection systems for load shedding or generator disconnection, with
the risk of losing stability.
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SG vs power electronic (PE) converters:

SG characteristics: Conventional PE converters
* I|nertial behavior (mechanical rotor) * No inertia (no rotating parts)
* Large short circuit current contribution * Limited short circuit current (rated)
* Harmonic filtering * Active filters for power quality
improvement
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Virtual Synchronous Machine (VSM)

Conventional solar inverter:

ower Electronics ilter 4 rid .
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* Harmonic compensation
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VSM Fields of Application

Renewable energy integration Large aggregated loads

* Solar and wind farms * Fast charging stations with V2G
capability: provision of reactive power

* Storage systems
J9e Sy support, droops and inertia
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ENTSO-E, “Stability Management in Power Electronics Dominated Systems: A Prerequisite to DC-Bus

the Success of the Energy Transition”, June 2022
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Inverter architecture

Example: 2-level 3-legs inverter VSM does not depend on inverter
+
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Hardware and low-level control - two alternatives:

On ms scale, voltage source behavior: On ms scale, current source behavior:

Simple control (open loop voltage) Current limitation (closed loop)

More suited for weak grids

L o Fully tunable virtual stator
»P=Difficult to limit current

»P=—Stator inductance = Grid-side filter = More complex (current control)

»)=\ery sensitive to measurement errors = Issues with ultra-weak grids
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HOw to generate the reference output current /* ina VSM

The version with current control is much better for immunity to noise and imbalance.
To use it, we need to create a virtual impedance in the VSM, which in itself is a plus:

* Can be implemented in abc, af3 or dg frames
* Avoids numerical differentiation and low pass filter
* We can make the stator impedance much larger than the inverter filter impedance

* Current limitation is possible, without introducing distortion (clipping)

synchronous internal sy 1 1 current limitation
voltage from VSM N — R +s5-L —> and then current
algorithm, depends — S S loop references
on excitation control ‘v
g We may use more complex
from grid voltage impedance comprising virtual
measurements capacitor, tunable elements.
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Triangular frequency Hz ( s)

Sl f

Frequency Support — test of inertial response

Emulating a real frequency drop (' S)
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Splitting the frequency droop

Alternative damping solution:

* High-pass + low-pass filters
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plitting the frequency droop into high and low frequency channels

The high frequency (HF) channel is for damping, P ;C ) 3 RS Wr >
a4 2Hs
the low frequency (less gain) for primary support. pf
Alternative damping solution: 1 + 57,
] : I+ st
- Lead-lag filter damping ’
o i 1 I P,
Avoids coupling with frequency droop Our choice:
* Lower sensitivity to high frequency 1 Wy o
compared to PLL- or PlI-damping 2Hs
\ —
Pm + Skp + ki w, 1+STZ + (Dn
> DT ot
/ S+kg P
P, 7
000 16

TELAVIV NU'0NX"JIN
UNIVERSITY 2'AN'TN



	Slide 1
	Traditional power generation
	Most commonly grids are AC
	Synchrounous genartors (SG)
	Slide 5
	Slide 6
	Slide 7
	SG vs power electronic (PE) converters:
	Virtual Synchronous Machine (VSM)
	VSM Fields of Application
	Inverter architecture
	Hardware and low-level control - two alternatives:
	How to generate the reference output current i* in a VSM
	Frequency Support – test of inertial response
	Splitting the frequency droop
	Slide 16

