Plan for Lectures 15th & 16th November

1. Modelling of Fluids and Structures

Structures: PDE examples of strings, Euler-Bernoulli beams.
a. The concept of a vibration mode shape
b. Reduced order models

Fluids: Navier-Stokes equations

a. Coherent structures for fluids

b. Data-driven identification of coherent structures
c. Data-driven dynamics models

2. Stability of nonlinear systems

a. Lyapunov stability theory
b. Discrete and continuous time systems

3. Model Predictive Control

A brief introduction to MPC and its closed-loop stability.
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Modelling and Control of Flexible
Structures interacting with Fluids

u(t)
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Modelling:
() = f(x(t), u(t)) Th+1 = [Tk, ug)
y(t) = h(z(t)) Yr = h(zk)

Question: How can we create usable models from PDEs?

Stability:
lim z(t) =0

t—r oo

Question: How can we characterise or check stability?

Control:

u(t) = f(y(t))

Question: Can stability be enhanced by (feedback) control



Some challenges of controlling fluid-
structure interactions

Classical Linear Control

Classical Flight ¥ i
Control 8

- -]: <
Unsteady flow
(coherent)

Model-free optimization & machine
learning v . Unsteady flow
il (turbulent)

dwil] '@ }SOJ |euohenawo)
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1.1 Continuous time models

e We will seek to construct finite-dimensional state-
space models in these lectures:

i(t) = fla(t), u(t))
y(t) = h(z(t))

where

x(t) € R™ is the state of the system

u(t) € R" is the control input
y(t) € RP are the measured outputs

and
f:R* x R* - R"
h:R" - RP
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1.1 Linear Control Systems

A e Ran
e Suppose
B G RRXU
f(x,u) = Az + Bu, h(x) = Cx C ¢ RP*n
then

i(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

e Solution

t
z(t) = e“2(0) +/ e~ Bu(s)ds
0

with

t? t"
e =T+tA+ —A’+. . 4 A"+ ...
2! n!
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1.1 Discrete Time Control Systems

Suppose that
Tyl = f(rk Uk): Yr = h(rk)

Interpretation: .U, yx are the states, inputs and
measurements at times

tp <ty <fg <--- <y <lpg1 <>

Discrete time systems are important for numerical
implementation and are naturally when identifying models
from data
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1.2 Two examples from Structural Mechanics

We now look at two PDE models from structural mechanics:
a. A model for a thin elastic string
b. The Euler-Bernoulli model for beam bending
In looking at these examples we will introduce the concept of a

vibration mode which will be used as a natural basis for creating
reduced order models

Saint Mary's University
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1.2 A vibrating string

v

Example 1 (Vibrating String). Let u(x,t) be the vertical displacement of a
string at position 0 < x < L and at time t > 0. The string is held fized at its
endpoints x = 0,x = L and is assumed to satisfy the PDE

O*u  0%u

o2 x2
u(0,t) =0, t>0
u(L,t) =0, =0

Suppose that the string is initially at rest and that the initial displacement and
velocity of the string are given by

(x;0) = h(x), g—?(:c,O) ={%); P z< L

Find the displacement u(x,t) for all t > 0.
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1.2 Vibration Modes & Reduced Order Models

e Have decomposed solution into vibration modes:

565
wlhed) = Z A, sin(w,t + P,) sin(w, )

n=1

e This implies a natural way to create reduced order models by
using an finite dimensional series expansion

n

u(x,t) ~ Z q1i(t)o;(x)

1 =1
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1.2 Reduced order models

e To find a reduced order model assume a finite
dimensional series and substitute into the PDE:

92 u 02w

n /E’/% HZ ~ Ox?
u(z,t) = Z q1i(t)di() u(0,t) = 0. t >0
=1 u(L,t) =0, t > 0.
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1.2 An alternative view

e Substitution into the PDE works but depends on already
knowing a good choice for the vibration mode shapes

Op(x) := sin (w, )

e An alternative is to re-write the PDE in first order form

0 [ u g u
ot Uy (;):2 0 Uy

The mode shapes then arise naturally as eigenfunctions
of the operator generating this linear PDE

Example 3. Consider the operator

0 I/
A= )2
pe
O 0
Let w,, = F*. Show that \,, = iw, are eigenvalues of A with eigenfunctions
given by
On () sin(w,, )
D, (r)= =
Uy () iwy, sin(w, x)
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1.2 The string equation

Example 4. Question: In the construction of the “reduced order” models
described above, any subset of the vibration modes ¢, (x) = sin(w,x) could have

been chosen to create a reduced-order model of a given size. Why might it be a
good idea to select that “first n” modes?

Example 5. Question: Suppose that the string is initially at rest and that
its initial displacement has a parabolic distribution

u(z,0) = z(L.—z), L we

What is the amplitude of the states q1;(t), q2i(t) of the full-order series solution
to the PDEY?

Data-driven Modelling Page 12




1.3 The Euler Bernoulli beam

[

Euler
Bernoulli ...

Example 5 (Cantilever Beam). Let u(xz,t) be the vertical displacement of a
beam at position 0 < & < L and at time t > 0. The beam is clamed at the

end-point x = 0 and can move freely at the other end x = L. The displacement
1s assumed to satisfy the PDE

a0t
o2 ozt
u(0,t) =0 = u,(0,¢), t>0

U (Let) = 0 = Ugaa (. 1), t>0.

Find a reduced order model for the beam’s dynamics.
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1.3 Euler Bernoulli Vibration Modes

0 d4¢ boundary

o(x) = w—(x) >  cosh(y/wL)cos(y/wL) +1 = 0.

d-’f:4 conditions

Question: what can be said about the
natural frequencies satisfying this equation?
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1.3 Euler Bernoulli Vibration Modes

Vibration modes of an Euler-Bernoulli beam:

on(z) = {cosh (’dlllim:) — cos (fiizm')]

cosh (B,7) + cos (Bn) : Bz . [ Bn7x
s o : — sinh — sin
sinh (8, 7) + sin (8, 7) L L

2
e The natural frequencies w,, = %Bﬁ are solutions to

cosh(y/wL) cos(y/wL) +1 = 0.

e The first six mode shapes are plotted below

¢ A reduced-order mode for the flow can then be created as for the case
of the string equation by letting

0%u o 0*u _o
_ ’/b/—/—? o2 ozt
T Su
u(x,t) = Z qri(t)pn(x) 'U(O. f) =)= ’ILI(O, t)-,
i=1 Uppl0it) =0 ="Bpae(D,1);
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1.3 Mode Orthogonality

Example 8. Show that the Fuler-Bernoulli mode shapes for a clamped beam
are orthogonal.
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1.3 Reduced order beam models with control

Example 7. Consider a cantilever Fuler-Bernoulli beam upon which a force

u(t) is applied to a section a — e < x < a + € of the beam. We assume this is
modelled by extending the PDFE to be

PPw  tw

ot? " Oxt = glx)u(t)
w(0,t) =0 = w,(0,1), t>0
W (0, 1) = 0=y (0, 1), i >0
where
5 a—e<z<ate
g(x) = -
0 otherwise

Construct a reduced-order model for the controlled system.
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1.4 Reduced Order Models For Fluid Flows

¢ For fluids modelling the challenge is the nonlinear Navier-
Stokes equations!

e System state is the flow velocity

u(x,t)
u= | v(x,t) |- xz el

w(x,t)

We will not attempt to study this PDE analytically.
Instead, we will create reduced-order models for flows
from data.

To do this, we use the same philosophy as for the string
and beam equations and assume

n

u(@.t) =Y z(t)i(x), t>0,zeQ
i=1

Question: what are “'good" mode shapes for turbulent
fluid flow?
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1.4.1 Coherent Structures in Fluid Flows

Figure 1: Numerical simulation of 2D flow past a circular cylinder (left) and
atmospheric Von-Karman vortex shedding for flow past an island! (right).

u(z,t)

uz ) = v(z,t)

e The following flow fields which are "good" choices for
coherent structures for this flow

T
u(z,t):= lim %/o u(z,t)dt, z € (),

T—oo

(a) a(z)

(b) B1(2)
N Ne G @)
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(d) ®3(=2)

e Will see subsequently how to compute these structures. If we can
do this the idea is to approximate the flow using a series expansion

u(z,t) ~ a(z) + Z 2 (1) ®;(2)

=u(z) +o1(1)P1(2) + - + on(t) PN (2)

e |n pictures:

u(z,t) = _
+  z1(t) -
-
+ zn(t) _

Data-driven Modelling Page 20



1.4.1 Coherent Structures In Fluid Flows

high-fidelity flow field

(a) 2D aerofoil wake

coherent structures

®,(2) Py(z)

(b) 3D turbulent flow past a landing gear
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1.5 Coherent Structures From Data

e Suppose that have data of a fluid flow velocity
u(z;,t)
At fixed spatial locations

21,22,...,2p.

e This is referred to as a snapshot of the flow

0 V‘
A -

2N

| |

0 2 A 6 8 10

Figure 4: Snapshot of 2D flow past a circular cylinder.
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1.5 Coherent Structures From Data

09 November 2023 16:48

u(z;,t
For example: data on two velocity components: u(z;,t) = ( E ;)
v(z;,t

([~ o)
g )

vectorised
perturbation
velocities
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1.5 Coherent Structures From Data

e Next, suppose snapshots collected at times

tla t21 t3a tN—la tN

e Gives a series of snapshot data vectors

yla y2: y33 yN—la yN
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1.5 Coherent Structures From Data

e For data analysis create the snapshot matrix

(911 Yz - le\
Y21 Y22 - Y2N 0 0
v=|: B PR S
¥ +
\y’pl Yp2 - y’pN)

y;; = velocity information at location z; collected at time ¢;
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1.6 Singular Value Decomposition

Definition 1. Suppose that Y € RP*N o snapshot matriz, let p > N and

assume that rank(Y) = N. The economy singular-value decomposition of
Y is a decomposition into three matrices given by

Y =USW'
where
(i) U € RP*N satisfies UTU = I;
(ii) W € RVXN satisfies WTW = I;

(iii) ¥ € RN*N s a diagonal matriz with positive entries.
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1.6 Singular Value Decomposition

The Relation to Coherent Structures

If we can compute the decomposition Y = UXW T then:

1. The columns of U are the coherent structures:

T T
U= ‘-131 (I)N
! )

In fluid mechanics, these structures are called POD modes.

2. Diagonal entries of ¥ are the singular values of Y:

(o1 \

02

\ ox)
These rank the importance of the coherent structures,

01 > 09 > -+ > ON.
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3. The matrix W contains information required to find the linear combination
of modes ®; needed to construct each snapshot of the flow. For

1 1
Y=1w, - yn
! !

the snapshot Y; sampled at time ¢; can be written

N T
Yj =20k | Bi | Wiy
=1
!
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1.6 Singular Value Decomposition

e Can write the SVD as

N

-
Y = E (J‘;;(I)kwk
k=1

e By using different numbers of terms in this sum, we can form
different approximations to the snapshot matrix.

Theorem 1. Suppose that we approrimate Y by using r < N coherent struc-

tures, i.e. letting
,
= E O‘;l-_(l)kw;—.
k=1

Then this is the optimal rank-r approximation to the snapshot matriz Y in the
sense that

|Y = Y, |7 = min {||Y — B|% : rank(B Z o
k=r4+1
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1.6 Some examples

e Unsteady flow past a circular cylinder Re = 60

POD modes

e Question: what percentage of the flow perturbation
energy is described by a given number of modes?

2;21 o7

E. = ~
Zj:l o7
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1.6 Some examples

e Flow past an aerofoil at Re = 23,000

POD modes

e Question: what percentage of the flow perturbation
energy is described by a given number of modes?

Z;:l 0-2

E,. = N
Zj:l J‘?
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1.6 Some examples

e Flow past an aerofoil at Re = 408, 000

POD modes

e Question: what percentage of the flow perturbation
energy is described by a given number of modes?

Zgzl ‘-Tf

E. = ~
Zj:l Jf
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1.7 Time dependent weights of POD modes

e Consider the case where snapshot matrix contains data about
one velocity component, e.g.,

vij = u(zi, tj) —u(z;), i=1,....p, j=1,...,N,
e Recall that the idea was to decompose
u(z,t) —u(z;) = 1 ()P + 22(t)Po+ - - + N () Py

e Question: what are the time-dependent weights?
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1.7 Time dependent weights of POD modes

u(z,t) —i(z;) = v1(t) @y + 22(8) P2 + - - - + 2N (1) Py

e Question: what are the time-dependent weights?

Proposition 1. Suppose that ®,,P5,..., Py are the POD modes calculated
from the snapshot matriz Y € RP*N . Then the POD weights at sample times
t1 <to <--- <ty of the first POD mode are

cplTY:(g;l(tl) z1(te) ... :1:1(t:N))

In general,

Uy =
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21 (t), xa(t)

1.7 Some examples

e Unsteady flow past a circular cylinder at Re = 60

POD modes
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1.7 Some examples

e Flow past an aerofoil at Re = 408, 000

POD modes

e POD weights

2

o] L3
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1.8 Dynamic Models from Data

e \We have seen that

a. Coherent structures can be extracted from data
b. Their weight sequences are temporally coherent

e |dea: fit a model to the time-dependent weight sequences

oA oA oA A oA A
VAR TR

(), alt)

(), ag(t)

e Will look at a technique called Dynamic Mode Decomposition

Data-driven Modelling Page 37



1.8 Dynamic Models From Data

e Suppose we have collected flow snapshots

at times

ffj.'_|_1 — ?L; + &f J — J_ ‘o ._.f\"r.

e |dea is to model evolution over one timestep At

Question: If we look for a linear model, is it sensible to
try to find a matrix such that

y‘j-{-l :‘:‘ij j:L...?f\’*.

where A RFP*P?
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1.8 Dynamic Models From Data

e To use SVD to reduce dimensions, first define two matrices

(+ 1 +)
YB = Y, Yo e YN ERPXN
Ly Iy

(1 1 )

o px N
Yqg = Yo Ys - Ynia € RP

Lo L)
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1.8.1 The DMD Optimization Problem

¢ The original idea was to model snapshot evolution via

yj-{-l ~ Ay}‘ )} - J—r """" T\ 'T-

U’ x
N ocR
¢ To test whether a given matrix is a good model, look : I
at the residuals vasdl
A=UMU e
1
T_J;:yj-i-l_ij‘ j:]__..‘..j\'r. * l

“— albad

¢ Goodness of fit quantified by statistic

N N
R=D"|rl> =y — U—""IUT“H'_;'||2
i=1 =1
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1.8.1 Dynamic Mode Decomposition (DMD)

U :

e ek
|
T3 =T

A=UMU
|

v ;
[r— o—VY 5= W

e Minimising the fitting residuals gives
an optimal low-order linear model.

Theorem 2 (Dynamic Mode Decomposition). Let Y € RP*(N D be a full-rank
snapshot matriz and let Y, Yp € RPN be the “after” and “before” snapshots.
Then
al 2
argmin ¢ Y |y, —~UMU Ty, ||": M e RN 3 =UTy,ws .

i=1

Consequently, an approximate model for the mode weights is x(tpy1) = Max(ty),
where M = U Y, WE~ L.
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1.8.1 Summary of Data-Driven Modelling

1. Start with aset y,,y,,..., Yy, € R of snapshots of a fluid flow, sampled
at times t1,%2,...,ty11 with common time-step At.

2. Form the snapshot matrix

T 7 T
Y=y, v, YN
I 1

3. Apply Proper Orthogonal Decomposition (POD) to Yp to extract the
POD modes @

T T
Yp=USW', U=|&, ... &y
+ 4

4. A reduced-order model of the flow be created with state

/:,r:l (¢) \

xa(t)

\zw ()

A given value of x € RY corresponds to a flow with velocity field

w(z) =u(z) + Z:ci(t)ti’i(z)
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5. To find an equation for the dynamics of the reduced-order state x, create
the “after” snapshot matrix

T 7 1
Ya= 1y, y3 - YnN+1
L 1

and solve the DMD optimization problem to obtain M = U 'Y, WX~L.

6. The matrix M € RN*N gives the optimal linear model describing the
evolution of the flow contained in the collected snapshots. The reduced-
order state & € RY satisfies discrete-time dynamics

x(tj1) = Mz(t;), J=0. (5)

over a time-step of length t;41 — t; = At.
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1.8.1 DMD Eigenvalues

e The DMD eigenvalues associated with the above modelling
process are defined by

Ai(A) = i log \:(M), i=1,....M

where (M) are the eigenvalues of M € RV >V |

Question: why does this definition make sense?
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1.8.2 Some examples

e Unsteady flow past a circular cylinder at Re = 60

POD modes

B

cyl_flow -
Shortcut

e DMD eigenvalues are on the imaginary axis

DMD Eigenvalues

05
04+ *
03} ¢
02+t .
—_
Q 0.1} .
-
e&"’ 0 . .
p—
E 01+¢ .
= o2 .
03} .
04}
L]
05- " . . " J
-10 8 6 -4 -2 0 2
Re (\DMD) <o’
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1.8.2 Some examples

e Ajetinjected into a crossflow

Mo |

‘< A 'ﬂl \ {\l s ‘
f\,J\J NAASIUY = |

"Taken from C. Rowley et al., Spectral analysis of nonlinear flows, Journal of Fluid Me-
chanics, 2009.

e Even this more complicated flow has clear dominant
frequencies. The modes associated with these frequencies are

(a) . (h)

St =0.141 St =0.0175
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1.8.2 Some examples (Euler Bernoulli)
e Data-driven model of a cantilever Euler-Bernoulli beam
e From a simulation of the PDE, create a data matrix

y — u(z,t1)  w(z,t) - ulx,ivi) c R2PX*(N+1)

Uy (.'I:._ f]_} ':'.n'ft(m, fl) et Ug (.'I:._ t_.'\.".',.]_)

e Taking the SVD gives mode shapes which match well with
the dominant linear eigenfunctions

Eigenfunctions POD modes

Also look at the DMD eigenvalues:
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Figure 19: Eigenvalues of A = ﬁ log M shown in blue circles. Natural frequen-
cies w such that cosh (y/wL) cos (y/wL) + 1 = 0 are shown in red crosses.

Questions:

What are all the eigenvalues on the left of the plot?

Why are there so many?

Does it matter that they do not match with the natural frequencies?
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1.8.2 Some examples (Euler Bernoulli)

e Also look at the DMD eigenvalues:

151
o O
10 | “
®
5F @
e ®
< .
=< of 5
~— @
= o
= @
= g
5F ]
-10
_15 1 L 1 1 1 | 1
-30 -25 -20 -15 -10 -5 0 5

Figure 19: Eigenvalues of A = ﬁ log M shown in blue circles. Natural frequen-
cies w such that cosh (\/wL)cos (y/wL) + 1 = 0 are shown in red crosses.

Questions:

What are all the eigenvalues on the left of the plot?

Why are there so many?

Does it matter that they do not match with the natural frequencies?
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1.9 DMD with control inputs

e Suppose we not only have snapshots

Yi:Y2o - YNy Yngr € RY

e But we also know these were collected at the same
time as a series of applied control inputs

up = u(ty),us = ulte),...,uny1 = u(tyy1) € R

e Similar to DMD we seek a controlled model

where A € RP*P gnd B € Rr*1

e To find the state and input matrices, can use a similar
idea to standard DMD:

(1 1 )
= Yy Y2 - Yy c R(p_H)x_.-\;
AN 1

\-‘u..l Us ... -;,r__N)

Data-driven Modelling Page 50



T 7 T
Ya= Ya Ys -~ Yni1 e RV
11 1

e Taking the SVD of Yp =UXW ' gives

U .- ;
v=|""), U eRN U, R

Us

DMD model with Control

x(t;41) = Ma(t;) + Tu(t;),  j>0.

where

_._nuf e LTJK*ILIIE_I e RI\FXP&F H.I].d. F — UITYH‘VE_IUJ = er\h'rX]..

®see Proctor et al. (2016) Dynamic Mode Decomposition with Control, SIAM Journal of
Applied Dynamical Systems, 15(1), 142-161.
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1.9 DMD with sensor measurements

e Suppose a sensor measurement can be taken from a flow

y(t) = u(zs, 1)

e For example, one component of velocity is measured
at a single location in the flow domain

Using the assumed series decomposition

y(t) = u(zs,t) = u(zs) + Z z; (1) P;(2z5)
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1.9 Summary

e Have shown how data ensembles can be used to create finite-
dimensional control systems of the form

fl?(f‘;'_{_l) = :';If[?(fj) -+ ]-_‘”'j

y; = Cx(t;)

e The link to an original state, typically the solution to a PDE is

N
u(z.t) =u+ Z;f)g(ﬂq’t‘

i=1

e Have seen that solutions agree well with known analytical
solutions from linear beam theory.

e The power of the technique is that it can be applied generally
to any data set drawn from a dynamical system.
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