2. Stability

¢ |n the first section of lectures we have seen how to create
finite dimensional discrete time models

Tri+1 = Axp + Buy, rr € R", up € R™
or continuous time models

i(t) = Az(t) + Bu(t)

e These can be used to give reduced-order
approximations to controlled dynamical systems

e Recalling that the state x(t) describes perturbations,
the standard aim of controller is to use u(t) to
stabilize the system, i.e., ensure

lim x(t) = 0.

t—oo

e Purpose of this section is to derive checkable
conditions for stability.
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2.1 Discrete Time Stability

In this section we consider discrete time systems

I i R”
where we assume that

(i) xp € R™ is the system state
(ii) f:R™ — R™ is continuous

(iii) and f(0) = 0 is an equilibrium point.
e Will give a very brief introduction to Lyapunov
stability theory.
e The results we derive apply to both linear and

nonlinear systems and give a systematic method of
determining system stability.
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2.1 Lyapunov Stability

Definition 2. The equilibrium point x = 0 of the system (7) is (Lyapunov)
stable if for any € > 0, there exists 6 > 0 such that

lzo|| <6 = ||z <€, forallk>0.
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2.1 Asymptotic Stability

Definition 3. The equilibrium point x = O of the system (7) is asymptotically
stable if i) it is Lyapunov stable and ii) there exists 6 > 0 such that

|zo|| €< 6 = lim x, = 0.
k—roc

The equilibrium is said to be Globally Asymptotically Stable (GAS) is limy_, oo ) =
0 holds for any . € R™.
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2.2 Linear Stability

Example 9. Suppose that x 1 = f(xy) is linear with f(x) = Ax for some

matriz A € R"*". Then the equilibrium point x = 0 is stable (and GAS) if and
only if

o(A) C D,
where a(A) C C is the set of eigenvalues of A.
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2.3 Nonlinear Stability

e Question: There are nice checkable conditions for linear stability.
What results are available for nonlinear systems?

e |dea: Suppose that z.+1 = Az, and that x5 = v with

Av =), and [A <1

Then...
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2.3 Nonlinear Stability

* initial idea was to use the norm decrease condition
[f(@)]l2 = llzll2 <0, xeR"

As a way of checking stability of the nonlinear system =1 = f(x;)

Example 10. Consider the system a1 = Az with

0.99 0.99
0 099

Show that the system is globally asymptotically stable. Show further that the

norm-decrease condition ||Axy| — ||zk|| < 0 does not hold along all trajectories
of the system.
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Figure 20: Trajectory z,1 = Az, from zg = (1/v/2,1/v/2).
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2.4 Lyapunov Functions

e Have just shown that the naive approach to extending linear to
nonlinear stability fails. The following result introduces the
notion of a Lyapunov Function to fix this problem

Theorem 3. Let 0 € D C R" be a domain containing the equilibrium point

x = 0 of the system xy 1 = f(xy). Suppose there exists a continuous function
V. D — R which satisfies the following three conditions:

i) V(0) =0; and V() > 0 for any © € D with « # 0;

it) There exist constants oy, g such that

aq||z]ls < Vix) < asl|z2, x e D:;

iti) V(f(x)) — V(x) <0 for any x € D.

Then the equilibrium point @ = 0 is Lyapunov stable.
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2.4 Lyapunov Functions

e A small addition gives conditions for asymptotic stability.

Theorem 4. Suppose that the conditions of Theorem 3 hold with D = R" and
the third condition replaced by

V(f(x)) —V(x) <0, 0#x e R".

Then the equilibrium point & = 0 of the system xr41 = f(ak) is globally asymp-
totically stable.
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2.4 K-functions

e With a view towards constructing Lyapunov functions, the
upper and lower bound condition

o |lz|lz < Vix) < as||z||;

appears to place specific (linear) growth rate on the Lyapunov
function. This is not necessary.

Definition 4. A function o : Ry — R is said to be of type K, if it is strictly
increasing with a(x) — 0o as x — oo and satisfies a(0) = 0.

e The growth condition can be replaced by the more general:

Remark 1. In Theorem 4, the condition ii) placing upper and lower bounds on
V' can be replaced by the following: there exist two functions aq,ae € Koo such
that

ay(flzllz) < V(z) < ao(lz]2),  2eR”
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2.5 Lyapunov Stability for Linear Systems

Definition 5. A real symmetric matriz P € R™*" is said to be strictly positive
definite if
x' Pz >0, 0+#xcR"

and we write P = 0 if this is the case. A negative definite matric P < 0 is
definied in an analgous manner.

e Recalling the positivity condition of Lyapunov functions, a
possible class of Lyapunov functions is given by

V(z)=a' Pz, (for any P = 0)

e For real, symmetric, matrices positive definiteness
can be checked by looking at eigenvalues

x' Px x' Px
and A, (P) = max

)‘.rrlin(P} = min 0o in W

0#zeRn ||x||?
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2.5 Lyapunov Stability for Linear Systems

e Quadratic Lyapunov functions can be used to
characterise stability of linear systems

Example 11. Consider ;. = Az with £y € R™. Show that the system is
globally asymptotically stable if there exists a matrizc P > 0 such that

A'PA—P =<0.

Lyapunov Stability Theory Page 13



2.5 Lyapunov Stability for Linear Systems

e Look again at the linear system with large transient growth

Example 12. Consider the linear system x = Az with

0.99 0.99
0 099

Find a Lyapunov function of the form V(x) = =" Px which implies that the
system is GAS.
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2.6 Level Sets

e The previous calculation was a painful way to check stability of
a linear system!

e However, an advantage of the Lyapunov approach is that it
gives information about the geometry of trajectories of the
system.

e To explain this recall that we have looked at level sets

Qp:={xeR":V(x) <b}

e For the system in the previous example

1 (1 —a?)"!

V(z) =z Pz, P =
(1—a?)"t 3(1—a?) 2

from which the level sets can be computed...
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2.6 Level Sets
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Figure 21: Level sets 21999 and aggo for the Lyapunov function V(z) = a " Puz.

Also shown is the traje-::t.ory (:r:k) k>0 of the system Tj,, = A.’rk with zg =
(1/v/2,1/v/2) with A = (099 0:99).
1 (1 _ {12)_1

V(z)=x'Pzx, P

(1—a?)~' 3(1—a?)2

QO :={xzecR":V(x) <b}
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2./ Continuous Systems

* Now consider continuous time systems

&(t) = f(x(t))
iE(U) = xy € R"

e Assume that

(i) a(t) is the system state at time t > 0
(ii) f: D — R™ is a Lipschitz continuous

(iii) f(0) = 0 is an equilibrium point.
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2.7 Stability (Continuous Systems)

e There are analogous definitions for stability:

Definition 6. The equilibrium point @ = 0 of the system x(t) = f(x(t)) is:

i) Stable if for any € > 0, there exists 6 > 0 such that
||| <6 = ||x(t)|| <€, forallt>D0.
i1) Locally asymptotically stable if there exists & > 0 such that

|lz(0)]| < 6 = tlir_rll:t:(t} = .

i11) Globally asymptotically stable if for any xo € R™, it follows that x(t) — 0
as t — 00.
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2.7 Lyapunov Stability (Continuous Systems)

e There are analogous Lyapunov conditions to verify stability:

Theorem 5. Suppose that © = 0 is an equilibrium point for x = f(x). Suppose
that a continuously differentiable function V' : D — R exists which satisfies

i) V(0) =0; and V() > 0, for every 0 # « € D;

i)
(VV)(z) - f(x) <0, x e D.

Then @ = 0 is stable equilibrium point for & = f(x).

Question: Why is condition ii) the natural extension of the contractive
condition for discrete time systems?
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2.7 Asymptotic Stability (Continuous Systems)

e There are analogous Lyapunov conditions to verify stability:

Theorem 6. Suppose that € = 0 is an equilibrium point for @ = f(x). Suppose
that a continuously differentiable function V : R"™ — R exists which satisfies

i) V(0) =0; and V(x) > 0, for every 0 # x € R";
it) There exist o, a0 € Ko such that
ar(|z]]) < V() < az([z])). =R
iii)
(VV)(x) - f(x) <0, 0+# x € R".

Then x = 0 is a globally asymptotically stable equilibrium point.
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2.8 Example: the Lorenz system

e Consider the Lorenz system

T1 = 0T — OX1
:f_.'g — pPpr1 — T2 — I1I3

T3 = — a3 + x129.

e For certain parameter values, this famously exhibits
chaotic motion

(a) 3D view

Lyapunov Stability Theory Page 21



a(f]

xa(t]

(b) Lorenz states

Figure 22: The Lorenz attractor for parameters (o, p, 5) = (10, 28,8/3).
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2.8 Example: the Lorenz system

T = 0xo — OX]
Ty = pPr1 — T2 — T1T3

T3 = —3x3 + r119.

Example 13. Consider the Lorenz system with parameters (o, p, 3). Show that
x = 0 € R? is globally asymptotically stable if 0 < p < 1.
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2.8 Example: the Lorenz System

e The previous example showed that it is possible to prove
global stability of nonlinear systems.

e However, this example misses the point for the Lorenz system
in so far as its interesting behaviour is not for the parameter
values where we can prove global stability

7/

(a) 3D view

e To prove a result which says something interesting requires us
to be able to say sometime about the attractor.
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2.9 Estimating Attractors

e The following result says that if we can verify the
Lyapunov decay condition outside a ball, then the
system's state is bounded.

Theorem 7. Consider the ODE x = f(x). Suppose that V : R" — R is

continuously differentiable, set 't
in addition, there exists R > 0 surh fh,a,t

and 11 and,

(VV)(z)- f(z) <0, || >R

Then there exists a ball Bg = {® € R™ : ||| < Q} such that the solution
x(t))e>0 enters Bg and remains in this ball for sufficiently large times t.

Example 14. Show that there exits a ball Bg such that any solution x(t) to
Lorenz system must enter B for sufficiently large t > 0.
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2.10 Lasalle's Invariance Theorem

e The previous result showed that the decay condition could still
be useful if it is only known in a certain domain.

e The following result is a second way in which partial decay
information can be used.

Theorem 8 (LaSalle’s invariance theorem). Suppose that @ = 0 is an equi-
librium point for € = f(x). Suppose that there exists V : R" — R satisfying
conditions i) and ii) of Theorem 6. Suppose that

(VV)(x)- f(x) <0, x&R"

and let ¥ = {x : (VV)(x) - f(x) = 0}. If it is the case that the only solution
to (10) that can remain in ¥ is the zero solution x(t) = 0, then the equilibrium
point & = 0 is globally asymptotically stable.
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2.10 An Example

e The following example shows how the invariance theorem can
show global stability even if the decay condition does not hold
everywhere.

Example 15. Consider the linear system @(t) = Az(t) and x(0) = o € R™.
Suppose that there exists a positive definite matriz P = 0 and a matriz C € R1*"
such that

PA+A'P=-C'C
Suppose that, in addition, (A, C) satisfy the observability property

[
/ |Cetay||?dt > k|xo||?, xy € R"
0

for some constant k > 0. Under these conditions, show that the system is
globally asymptotically stable.
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