
In the first section of lectures we have seen how to create 
finite dimensional discrete time models 

•

or continuous time models

These can be used to give reduced-order 
approximations to controlled dynamical systems

•

Recalling that the state          describes perturbations, 
the standard aim of controller is to use          to 
stabilize the system, i.e., ensure 

•

Purpose of this section is to derive checkable 
conditions for stability. 

•

2. Stability 
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In this section we consider discrete time systems 

where we assume that

Will give a very brief introduction to Lyapunov 
stability theory. 

•

The results we derive apply to both linear and 
nonlinear systems and give a systematic method of 
determining system stability. 

•

2.1 Discrete Time Stability
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2.1 Lyapunov Stability
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2.1 Asymptotic Stability
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2.2 Linear Stability
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Question: There are nice checkable conditions for linear stability. 
What results are available for nonlinear systems?

•

Idea: Suppose that                        and that               with  •

Then…

2.3 Nonlinear Stability
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initial idea was to use the norm decrease condition •

As a way of checking stability of the nonlinear system

2.3 Nonlinear Stability
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Have just shown that the naïve approach to extending linear to 
nonlinear stability fails. The following result introduces the 
notion of a Lyapunov Function to fix this problem

•

2.4 Lyapunov Functions
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A small addition gives conditions for asymptotic stability.•

2.4 Lyapunov Functions
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With a view towards constructing Lyapunov functions, the 
upper and lower bound condition 

•

appears to place specific (linear) growth rate on the Lyapunov 
function. This is not necessary. 

The growth condition can be replaced by the more general:•

2.4 K-functions
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Recalling the positivity condition of Lyapunov functions, a 
possible  class of Lyapunov functions is given by 

•

For real, symmetric, matrices positive definiteness 
can be checked by looking at eigenvalues

•

2.5 Lyapunov Stability for Linear Systems
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Quadratic Lyapunov functions can be used to 
characterise stability of linear systems

•

2.5 Lyapunov Stability for Linear Systems
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Look again at the linear system with large transient growth•

2.5 Lyapunov Stability for Linear Systems
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The previous calculation was a painful way to check stability of 
a linear system!

•

However, an advantage of the Lyapunov approach is that it 
gives information about the geometry of trajectories of the 
system.

•

To explain this recall that we have looked at level sets •

For the system in the previous example•

from which the level sets can be computed…

2.6 Level Sets
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2.6 Level Sets
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Now consider continuous time systems•

Assume that•

2.7 Continuous Systems
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There are analogous definitions for stability:•

2.7 Stability (Continuous Systems)
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There are analogous Lyapunov conditions to verify stability:•

Question: Why is condition ii) the natural extension of the contractive 
condition for discrete time systems?

2.7 Lyapunov Stability (Continuous Systems)
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There are analogous Lyapunov conditions to verify stability:•

2.7 Asymptotic Stability (Continuous Systems)
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Consider the Lorenz system •

For certain parameter values, this famously exhibits 
chaotic motion

•

2.8 Example: the Lorenz system
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2.8 Example: the Lorenz system
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The previous example showed that it is possible to prove 
global stability of nonlinear systems.

•

However, this example misses the point for the Lorenz system 
in so far as its interesting behaviour is not for the parameter 
values where we can prove global stability 

•

To prove a result which says something interesting requires us 
to be able to say sometime about the attractor. 

•

2.8 Example: the Lorenz System
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The following result says that if we can verify the 
Lyapunov decay condition outside a ball, then the 
system's state is bounded. 

•

2.9 Estimating Attractors
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The previous result showed that the decay condition could still 
be useful if it is only known in a certain domain.

•

The following result is a second way in which partial decay 
information can be used.

•

2.10 Lasalle's Invariance Theorem
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The following example shows how the invariance theorem can 
show global stability even if the decay condition does not hold 
everywhere. 

•

2.10 An Example
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