Model Predictive Control

- In the lectures so far, we have looked at techniques to find **reduced-order models** for physical systems and have derived conditions for system **stability**
- In the final lectures we will look at **control**
- There are a vast array of control methods available, but I want to give a very brief overview of one general method known as Model Predictive Control (MPC).
- This is a versatile technique and is applicable to nonlinear systems. Since these often arise in fluid structure interactions, it may be of some interest to you!

3. MPC problem set-up

• Will consider only discrete time control systems

$$x_{k+1} = f(x_k, u_k)$$
$$x_0 \in \mathbb{R}^n$$

• Interpret / assume:

(i) $x_k \in \mathbb{R}^n$ is the state at time t_k

- (ii) $u_k \in \mathbb{R}$ is a control input at time t_k
- (iii) $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is continuous

(iv) f(0,0) = 0 is an equilibrium point of the control system

Goal: find a control strategy

$$u_k = \kappa(x_k), \qquad \kappa : \mathbb{R}^n \to \mathbb{R}$$

to ensure asymptotic stability of closed-loop dynamics

$$x_{k+1} = f(x_k, \kappa(x_k))$$

3. MPC ingredients

- The key idea of MPC is to use the model to predict the controlled response of the system over a horizon of N future timesteps
- An optimization problem is solved to pick a sequence of optimal future control inputs over the future horizon
- **Only the first** optimal input is applied, and the system evolves over one timestep.
- The optimization process is then repeated, treating the new state of the system as the initial condition.

3. MPC ingredients

- The key idea of MPC is to use the model to predict the controlled response of the system over a horizon of N future timesteps
- An optimization problem is solved to pick a sequence of optimal future control inputs over the future horizon
- **Only the first** optimal input is applied, and the system evolves over one timestep.
- The optimization process is then repeated, treating the new state of the system as the initial condition.

3.1 Definitions for MPC

Definition 7. The following definitions will be used to build up an MPC scheme.

i) Stage Cost $L : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}_+$ is a positive, continuously differentiable, function which quantifies the desirability of the state $x \in \mathbb{R}^n$ and the penalty of applying the control action u.

A typical choice is the quadratic cost

$$L(x,u) = x^{\top}Qx + \rho|u|^2$$

where $Q \succ 0$ is an $n \times n$ matrices and $\rho > 0$

- *ii)* Horizon Length: $N \in \mathbb{N}$. The number of steps used to determine the current control action.
- iii) Let $u_{[0:N-1]} = (u_0, u_1, \dots, u_{N-1}) \in \mathbb{R}^N$ be a potential sequence of control inputs which can be applied over the prediction horizon.
- iv) Let $\phi(k; x, u)$ be the state of the system after $k \leq N$ steps, given an initial condition of x and the control sequence $u_{[0:N-1]} = (u_0, u_1, \dots, u_{N-1})$. For example,

$$\phi(1; x, u_0) = f(x, u_0),$$

and

$$\phi(2; x, (u_0, u_1)) = f(f(x, u_0), u_1),$$

and so on.

v) Constraints: Let $0 \in U \subseteq \mathbb{R}$ and $0 \in X \subseteq \mathbb{R}^n$ be compact constraint sets for the control input and state.

- vi) Final State Constraint: Let $0 \in X_f$ be a compact set which we will require the state at the end of the prediction horizon to belong to.
- vii) Final Stage Cost: $V_f : X_f \to \mathbb{R}_+$ is positive, continuously differentiable, and quantifies the desiribility of the state at the end of the prediction horizon.

3.1 MPC Optimization Problem

• Given the system is currently at state $x \in \mathbb{R}^n$ the idea of MPC is to solve

$$\min_{\boldsymbol{u}} \sum_{k=0}^{N-1} L(\hat{x}_k, u_k) + V_f(\hat{x}_N)$$
subject to
$$\hat{x}_{j+1} = f(\hat{x}_j, u_j), \quad j = 0, \dots, N-1,$$

$$\hat{x}_0 = x,$$

$$\hat{x}_k \in X, \qquad k = 1, \dots, N,$$

$$\boldsymbol{u} = (u_0, \dots, u_{N-1}) \in U^N$$

$$\hat{x}_N \in X_f.$$

3.1 More MPC Notation

Definition 8. Some simplifying notation:

1. The Value Function $V_N : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}$ is given by

$$V_N(x, \boldsymbol{u}) := \sum_{k=0}^{N-1} L(\hat{x}_k, u_k) + V_f(\hat{x}_N)$$

where it is implicit in the above equation that the states $(\hat{x}_k)_{k=0}^N$ depend on (x, \mathbf{u}) via $x_{k+1} = f(x_k, u_k)$.

2. For any $x \in \mathbb{R}^n$, let

$$\mathcal{U}_N(x) := \left\{ \boldsymbol{u} \in \mathbb{R}^N : \hat{x}_k \in X, \text{ for } k = 1, \dots, N-1, \text{ and } \hat{x}_N \in X_f \right\}$$

be the set of control inputs $\mathbf{u} \in \mathbb{R}^N$ which create trajectories over the prediction horizon which satisfy the constraints. These are called feasible or admissible control inputs.

3. Let $\mathcal{X}_N = \{x \in X : \mathcal{U}_N(x) \neq \emptyset\}$ be the set of system states for which there exists a control sequence to maintain feasibility.

3.1 Closed loop MPC

• Can now formally define MPC feedback law and algorithm

Feedback law:

1. Suppose that

$$x \in \mathcal{X}_N \subset \mathbb{R}^n$$

2. Define optimal control inputs

$$\boldsymbol{u}^*(x) \in \operatorname{argmin}\left\{V_N(x, \boldsymbol{u}) : \boldsymbol{u} \in \mathcal{U}_N(x)\right\}.$$
 $(P_N(x))$

where

$$\boldsymbol{u}^*(x) = (u_0^*(x), u_1^*(x), \dots, u_{N-1}^*(x))$$

3. The MPC feedback law $\kappa_N : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\kappa_N(x) := u_0^*(x)$$

Closed loop MPC: Given the feedback law

$$x_{k+1} = f(x_k, \kappa_N(x_k)), \qquad k \ge 0$$

3.2 A visual overview of MPC

- The statement $x \in \mathcal{X}_N$ just says that the state can be drive to the final state constraint set in N steps.
- Since the number of steps is arbitrary, we can build up this idea using a sequence of nested subsets.

 $\mathcal{U}_j(x) = \{ \boldsymbol{u} \in U^j : (\phi(k; x, \boldsymbol{u}))_{k=1}^{j-1} \subset X \text{ and } \phi(j; x, \boldsymbol{u}) \in X_f \}$ $\mathcal{X}_j = \{ x \in X : \mathcal{U}_j(x) \neq 0 \}$

3.2 A visual overview of MPC

Definition 9 (Invariant Sets). Given a system $x_{k+1} = f(x_k)$:

- 1. A set $X \subset \mathbb{R}^n$ is positive invariant if for any $x \in X$ it follows that $f(x) \in X$.
- 2. A set $X \subset \mathbb{R}^n$ is control invariant if for any $x \in X$ there exists $u \in U$ such that $f(x, u) \in X$.

Lemma 1. Suppose that X_f is control invariant. Define $\mathcal{X}_0 := X_f$. Then (i) For any $j \ge 1$, $\mathcal{X}_j = \{x \in X : \exists u \in U \text{ such that } f(x, u) \in \mathcal{X}_{j-1}\}$ (ii) $\mathcal{X}_j \subseteq \mathcal{X}_{j+1}$, for any $j \ge 0$.

3.3 Dynamic Programming

- Given the nested sets, it is natural to define a series of MPClike optimisation problems with different horizon lengths.
- Define the stage costs $V_j : \mathcal{X}_j \times \mathcal{U}_j \to \mathbb{R}$ by

$$V_j(x, \boldsymbol{u}) := \sum_{k=0}^{j-1} L(\hat{x}_k, u_k) + V_f(\hat{x}_j), \qquad j \ge 1,$$

• Define the **optimal costs** by

$$V_j^*(x) := \min\left\{V_j(x, \boldsymbol{u}) : \boldsymbol{u} \in \mathcal{U}_j(x)\right\}$$

Dynamic Programming

For any $x \in \mathcal{X}_j$ the optimal cost is

$$V_j^*(x) = \min_{u \in U} \{ L(x, u) + V_{j-1}^*(f(x, u)) : f(x, u) \in \mathcal{X}_{j-1} \}$$

And the optimal control is

 $\kappa_j(x) = \operatorname{argmin}_{u \in U} \{ L(x, u) + V_{j-1}^*(f(x, u)) : f(x, u) \in \mathcal{X}_{j-1} \}$

3.3 Towards MPC stability

- We now assume that a controller exists which can force the system to perform well locally in X_f .
- The dynamic programming relations then imply that this good behaviour is inherited on all the nested sets.

Lemma 2. Suppose that for any $x \in X_f$, there exits $u \in U$ such that $f(x, u) \in$ X_f and V_f)

$$f(f(x,u)) - V_f(x) \le -L(x,u).$$
 (15)

Then, $V_1^*(x) \leq V_f(x)$ and

 $V_{j+1}^*(x) \le V_j^*(x), \qquad x \in \mathcal{X}_j, j \ge 1.$

Taking more steps from a feasible point cannot cost more!

3.3 MPC Stability

 The point of this section is to study stability of the closed-loop MPC dynamics

$$x_{k+1} = f(x_i, \kappa_N(x_k)) =: g(x_k)$$

• Assumptions:

1. There exist $\alpha_L, \alpha_f \in \mathcal{K}_{\infty}$ such that

$$\alpha_L(\|x\|) \le L(x, u), \qquad x \in X, u \in U,$$

and

$$V_f(x) \le \alpha_f(||x||), \qquad x \in X_f$$

2. 0 is in the interior of X_f , and for any $x \in X_f$ exists $u \in U$ such that $f(x, u) \in X_f$ and

$$V_f(f(x,u)) - V_f(x) \le -L(x,u)$$

• The aim is to show that the optimal cost

 $V_N^*(\cdot): \mathbb{R}^N \to \mathbb{R}$

is a Lyapunov function for the closed-loop system

3.3 MPC Stability

Theorem 9. Consider the closed-loop MPC system $x_{k+1} = f(x_k, \kappa_N(x_k))$. with the above assumptions. Then

(i) There exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that

 $\alpha_1(\|x\|) \le V_N^*(x) \le \alpha_2(\|x\|), \qquad x \in \mathcal{X}_N;$

(ii) For any $x \in \mathcal{X}_N$, it follows that $g(x) = f(x, \kappa_N(x)) \in \mathcal{X}_N$;

(iii) There exists $\alpha_3 \in \mathcal{K}_{\infty}$ such that

 $V_N^*(g(x)) - V_N^*(x) \le -\alpha_3(||x||), \qquad x \in \mathcal{X}_N.$

Corollary 1. Suppose that the assumptions of Theorem 9 hold. Let $x \in \mathcal{X}_N$ and let $(x_i)_{i\geq 0}$ be the closed-loop MPC trajectory $x_{i+1} = f(x_i, \kappa_N(x_i))$. Then $x_i \to 0$ as $i \to \infty$.