Model Predictive Control

e |n the lectures so far, we have looked at techniques
to find reduced-order models for physical systems
and have derived conditions for system stability

¢ |In the final lectures we will look at control

e There are a vast array of control methods available,
but | want to give a very brief overview of one
general method known as Model Predictive Control
(MPC).

e This is a versatile technique and is applicable to
nonlinear systems. Since these often arise in fluid
structure interactions, it may be of some interest to
you!
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3. MPC problem set-up

e Will consider only discrete time control systems

Try1 = f(xp, uk)
rg € R"

* Interpret / assume:
(i) zr € R™ is the state at time
(ii) ug € R is a control input at time #,
)

(iii) f:R™ x R — R" is continuous

(iv) f(0,0) = 0 is an equilibrium point of the control system

Goal: find a control strategy
ur = k(xy), k:R*" =2 R

to ensure asymptotic stability of closed-loop dynamics

Tra1 = f(xp, k(zr))
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3. MPCingredients

e The key idea of MPC is to use the model to predict
the controlled response of the system over a
horizon of N future timesteps

e An optimization problem is solved to pick a
sequence of optimal future control inputs over the

future horizon

e Only the first optimal input is applied, and the
system evolves over one timestep.

e The optimization process is then repeated, treating
the new state of the system as the initial condition.

Model Predictive Control Page 3



3. MPCingredients

e The key idea of MPC is to use the model to predict
the controlled response of the system over a
horizon of N future timesteps

e An optimization problem is solved to pick a
sequence of optimal future control inputs over the

future horizon

e Only the first optimal input is applied, and the
system evolves over one timestep.

e The optimization process is then repeated, treating
the new state of the system as the initial condition.

Model Predictive Control Page 4



3.1 Definitions for MPC

Definition 7. The following definitions will be used to build up an MPC scheme.

i) Stage Cost L : R" x R — R is a positive, continuously differentiable,
function which quantifies the desirability of the state * € R™ and the
penalty of applying the control action u.

A typical choice is the quadratic cost
L(z,u) = ' Qz + p|ul?

where Q = 0 is an n X n matrices and p > 0

i) Horizon Length: N € N. The number of steps used to determine the
current control action.

ii) Let wpg.n—1] = (uo,u1,... . un—1) € RY be a potential sequence of control
inputs which can be applied over the prediction horizon.

iv) Let ¢(k;z,u) be the state of the system after k < N steps, given an initial
condition of x and the control sequence wjg.n 1] = (uo,u1,...,un—1). For

example,
o(1;2,u9) = f(z, o),
and
&(2;x, (ug,ur)) = f(f(x,up),u),
and so on.

v) Constraints: Let 0 € U CR and 0 € X CR" be compact constraint sets
for the control input and state.
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vi) Final State Constraint: Let 0 € Xy be a compact set which we will
require the state at the end of the prediction horizon to belong to.

vii) Final Stage Cost: Vy : X — R is positive, continuously differentiable,
and quantifies the desiribility of the state at the end of the prediction hori-
Zon.
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3.1 MPC Optimization Problem

e Given the system is currently at state z € R" the idea
of MPC is to solve

subject to 241 = f(Z;,u;), j=0,...,N—1,
To = I,
T € X, k=1,....N,
u = (ug,...,un—1) € unN

IN € Xf.
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3.1 More MPC Notation

Definition 8. Some simplifying notation:

1. The Value Function Vy : R™ x RN — R is given by

N-1

Vn(z,u) = Z L(&y, u) + Vi(@n)
k=0

where it is implicit in the above equation that the states (&)Y_, depend
on (z,u) via T = f(rg, ug).

2. For any x € R™, let
Uy (x) = {u eRYN :d3,e€X, fork=1,...,N—1, andiy € Xf}
be the set of control inputs u € RN which create trajectories over the

prediction horizon which satisfy the constraints. These are called feasible
or admissible control inputs.

3. Let Xy = {x € X : Un(z) # 0} be the set of system states for which there
exists a control sequence to maintain feasibility.
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3.1 Closed loop MPC

e Can now formally define MPC feedback law and algorithm
Feedback law:
1. Suppose that

r e Xy CR"
2. Define optimal control inputs

u*(r) € argl'nin{ﬁw (z,u) :u € MN(:;:)}. (Pyn(x))

where

u'(z) = (uy(x),ui(x), ..., un_())

3. The MPC feedback law s~ : R"™ — R js defined by

Closed loop MPC: Given the feedback law

Ti+1 = f(xr, kn(xk)), k>0
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3.2 A visual overview of MPC

e The statement = € X' just says that the state can be drive to
the final state constraint set in N steps.

e Since the number of steps is arbitrary, we can build up this
idea using a sequence of nested subsets.

Ui(x) = {uec U’ : (¢(k;z,u))l_; C X and ¢(j;z,u) € X5}

X;={re X :Uj(x)#0}
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3.2 A visual overview of MPC

Definition 9 (Invariant Sets). Given a system xpy1 = f(xg):

1. A set X C R" is positive invariant if for any x € X it follows that
flz)e X.

2. A set X C R" is control invariant if for any x € X there exists u € U
such that f(x,u) € X.

Lemma 1. Suppose that Xy is control invariant. Define Xy := X¢. Then
(i) For any j > 1,
X; ={x € X : 3u € U such that f(x,u) € X;_ 1}

(it) X; C Xjq1, for any j = 0.

Model Predictive Control Page 11




3.3 Dynamic Programming

e Given the nested sets, it is natural to define a series of MPC-
like optimisation problems with different horizon lengths.

e Define the stage costs V, : X; xU; - R by

i—1
ZL Tp, up) + Vp(25), Jj =1
k=0

e Define the optimal costs by

VI (z) := min {V}- (z,u) :u € Z/{j(:;:)}

Dynamic Programming

For any = € &; the optimal cost is

Viz) = Llél{_[l{L(J u) + V7 (f(z,u)) : f(z,u) € Xj_1}

And the optimal control is

kj(x) = argmin, . { L(x,u) + V,_ (f(z,u)) : f(z,u) € Xj-1}
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3.3 Towards MPC stability

¢ \We now assume that a controller exists which can force the
system to perform well locally in X5.

¢ The dynamic programming relations then imply that this good
behaviour is inherited on all the nested sets.

Lemma 2. Suppose that for any x € Xy, there exits u € U such that f(x,u) €
Xy and
Vi(f(z,u)) — Vi(z) < —L(z,u). (15)

Then, Vi*(z) < Vy(x) and

Vis(z) < ‘.'1‘("')‘ z € &j,j = 1.

Taking more steps from a
feasible point cannot cost
more!
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3.3 MPC Stability

e The point of this section is to study stability of the closed-loop
MPC dynamics

Tpr1 = fla;, kn(zr)) =: g(zy)

e Assumptions:

1. There exist a,ay € K such that
ar(||z|]) < Lz, u), reX,uel,

and
Vi(z) < ap(llz), z€Xj

2. 0 is in the interior of X, and for any x € X; exists u € U such that

flz,u) € Xy and

Vi(f(z,w) - Vi(z) < —L(z,u)

e The aim is to show that the optimal cost
Vi) RN SR

is a Lyapunov function for the closed-loop system
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3.3 MPC Stability

Theorem 9. Consider the closed-loop MPC system xy41 = f(ag, Ky (1)), with
the above assumptions. Then

(i) There exist a1, 0 € Koo such that
ar(flz]) < Vx(z) < ax(|z]), € Xn;
(i1) For any x € Xy, it follows that g(x) = f(z,ky(x)) € XN;
(iir) There exists ag € Koo such that

Vn(g(z)) = Vy(z) < —as(|[z]]), T € Xn.
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3.3 MPC Stability

Corollary 1. Suppose that the assumptions of Theorem 9 hold. Let x € Xy
and let (x;);>0 be the closed-loop MPC trajectory x;11 = f(x;,knx(x;)). Then
r; — 0 as i1 — oo.
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